Mark D Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7713584/publications.pdf

Version: 2024-02-01

61857 74018 10,008 76 43 75 citations h-index g-index papers 120 120 120 5706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene, 1987, 60, 237-243.	1.0	1,273
2	A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature, 2000, 407, 395-401.	13.7	1,001
3	KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell, 1989, 57, 1211-1221.	13.5	721
4	KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell, 1990, 60, 1029-1041.	13.5	520
5	Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast Journal of Cell Biology, 1990, 110, 1885-1895.	2.3	449
6	KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell, 1987, 48, 1047-1060.	13.5	404
7	Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell, 1992, 69, 353-365.	13.5	400
8	Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene, 1984, 29, 113-124.	1.0	346
9	[9] Construction and use of gene fusions to lacZ (\hat{l}^2 -galactosidase) that are expressed in yeast. Methods in Enzymology, 1983, 101, 167-180.	0.4	341
10	[14] Cloning genes by complementation in yeast. Methods in Enzymology, 1991, 194, 195-230.	0.4	282
11	Kar9p Is a Novel Cortical Protein Required for Cytoplasmic Microtubule Orientation in Yeast. Journal of Cell Biology, 1998, 140, 377-390.	2.3	264
12	Genetic Evidence for a Role of BiP/Kar2 That Regulates Ire1 in Response to Accumulation of Unfolded Proteins. Molecular Biology of the Cell, 2003, 14, 2559-2569.	0.9	188
13	Structure of the yeast endoplasmic reticulum: Localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast, 1991, 7, 891-911.	0.8	182
14	BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast Journal of Cell Biology, 1995, 130, 41-49.	2.3	180
15	Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center Journal of Cell Biology, 1996, 133, 1331-1346.	2.3	164
16	Bim1p/Yeb1p Mediates the Kar9p-dependent Cortical Attachment of Cytoplasmic Microtubules. Molecular Biology of the Cell, 2000, 11, 2949-2959.	0.9	150
17	Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Molecular Genetics and Genomics, 1984, 193, 557-560.	2.4	149
18	The Cortical Localization of the Microtubule Orientation Protein, Kar9p, Is Dependent upon Actin and Proteins Required for Polarization. Journal of Cell Biology, 1999, 144, 963-975.	2.3	144

#	Article	IF	CITATIONS
19	The Kinesin-related Proteins, Kip2p and Kip3p, Function Differently in Nuclear Migration in Yeast. Molecular Biology of the Cell, 1998, 9, 2051-2068.	0.9	133
20	Structure and function of the yeast URA3 gene differentially regulated expression of hybrid \hat{l}^2 -galactosidase from overlapping coding sequences in yeast. Journal of Molecular Biology, 1983, 170, 883-904.	2.0	125
21	DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast Journal of Cell Biology, 1995, 130, 553-566.	2.3	117
22	Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway Journal of Cell Biology, 1994, 126, 911-923.	2.3	111
23	NUCLEAR FUSION IN THE YEASTSACCHAROMYCES CEREVISIAE. Annual Review of Cell and Developmental Biology, 1996, 12, 663-695.	4.0	109
24	Asymmetric mitotic segregation of the yeast spindle pole body. Cell, 1992, 69, 505-515.	13.5	102
25	Distinct Morphological Phenotypes of Cell Fusion Mutants. Molecular Biology of the Cell, 1998, 9, 1395-1410.	0.9	100
26	Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. Journal of Cell Biology, 2004, 165, 99-109.	2.3	100
27	Separate domains of KAR1 mediate distinct functions in mitosis and nuclear fusion. Journal of Cell Biology, 1992, 117, 1277-1287.	2.3	99
28	Regulation of MAPK Function by Direct Interaction with the Mating-Specific Galpha in Yeast. Science, 2002, 296, 1483-1486.	6.0	98
29	Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body Journal of Cell Biology, 1994, 125, 843-852.	2.3	94
30	Dependence of Endoplasmic Reticulum-associated Degradation on the Peptide Binding Domain and Concentration of BiP. Molecular Biology of the Cell, 2003, 14, 3437-3448.	0.9	94
31	A family of ubiquitin-like proteins binds the ATPase domain of Hsp70-like Stch. FEBS Letters, 2000, 467, 348-355.	1.3	90
32	[53] Isolation of genes by complementation in yeast. Methods in Enzymology, 1987, 152, 481-504.	0.4	87
33	Functional Characterization of Pathogenic Human MSH2 Missense Mutations in <i>Saccharomyces cerevisiae</i> . Genetics, 2007, 177, 707-721.	1.2	86
34	Rvs161p Interacts with Fus2p to Promote Cell Fusion in Saccharomyces cerevisiae. Journal of Cell Biology, 1998, 141, 567-584.	2.3	85
35	Specific Molecular Chaperone Interactions and an ATP-dependent Conformational Change Are Required during Posttranslational Protein Translocation into the Yeast ER. Molecular Biology of the Cell, 1998, 9, 3533-3545.	0.9	76
36	The Yeast Centrin, Cdc31p, and the Interacting Protein Kinase, Kic1p, Are Required for Cell Integrity. Journal of Cell Biology, 1998, 143, 751-765.	2.3	76

#	Article	IF	CITATIONS
37	Protease helps yeast find mating partners. Nature, 1998, 396, 422-423.	13.7	71
38	Cell fusion during yeast mating requires high levels of a-factor mating pheromone Journal of Cell Biology, 1996, 135, 1727-1739.	2.3	70
39	Fine Structure Analysis of the Yeast Centrin, Cdc31p, Identifies Residues Specific for Cell Morphology and Spindle Pole Body Duplication. Genetics, 2001, 157, 503-518.	1.2	65
40	Yeast mating: Getting close to membrane merger. Current Biology, 2001, 11, R16-R20.	1.8	58
41	Two redundant systems maintain levels of resident proteins within the yeast endoplasmic reticulum Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9820-9823.	3.3	55
42	HOMOLOGOUS RECOMBINATION BETWEEN EPISOMAL PLASMIDS AND CHROMOSOMES IN YEAST. Genetics, 1983, 105, 843-856.	1.2	53
43	Unravelling the tangled web at the microtubule-organizing center. Current Opinion in Cell Biology, 1993, 5, 105-115.	2.6	52
44	Genetic Interactions between <i>KAR7/SEC71</i> , <i>KAR8/JEM1</i> , <i>KAR5</i> , and <i i="" kar2<="">during Nuclear Fusion in<i cerevisiae<="" i="" saccharomyces="">. Molecular Biology of the Cell, 1999, 10, 609-626.</i></i>	0.9	44
45	KAR5 Encodes a Novel Pheromone-inducible Protein Required for Homotypic Nuclear Fusion. Journal of Cell Biology, 1997, 139, 1063-1076.	2.3	43
46	Nuclear fusion during yeast mating occurs by a three-step pathway. Journal of Cell Biology, 2007, 179, 659-670.	2.3	42
47	Role of Transcription Factor Kar4 in Regulating Downstream Events in the Saccharomyces cerevisiae Pheromone Response Pathway. Molecular and Cellular Biology, 2007, 27, 818-829.	1.1	39
48	The Two Forms of Karyogamy Transcription Factor Kar4p Are Regulated by Differential Initiation of Transcription, Translation, and Protein Turnover. Molecular and Cellular Biology, 1999, 19, 817-825.	1.1	37
49	Yeast Mating. Methods in Molecular Biology, 2008, 475, 3-20.	0.4	33
50	Functional Interaction Between the PKC1 Pathway and CDC31 Network of SPB Duplication Genes. Genetics, 2000, 155, 1543-1559.	1.2	31
51	Lrg1p Is a Rho1 GTPase-Activating Protein Required for Efficient Cell Fusion in Yeast. Genetics, 2004, 168, 733-746.	1.2	26
52	Dynamic localization of yeast Fus2p to an expanding ring at the cell fusion junction during mating. Journal of Cell Biology, 2008, 181, 697-709.	2.3	25
53	Distinct Roles for Key Karyogamy Proteins during Yeast Nuclear Fusion. Molecular Biology of the Cell, 2009, 20, 3773-3782.	0.9	24
54	Prm3p Is a Pheromone-induced Peripheral Nuclear Envelope Protein Required for Yeast Nuclear Fusion. Molecular Biology of the Cell, 2009, 20, 2438-2450.	0.9	23

#	Article	IF	CITATIONS
55	Antagonistic regulation of Fus2p nuclear localization by pheromone signaling and the cell cycle. Journal of Cell Biology, 2009, 184, 409-422.	2.3	22
56	Assays of cell and nuclear fusion. Methods in Enzymology, 2002, 351, 477-498.	0.4	21
57	The Class V Myosin Myo2p Is Required for Fus2p Transport and Actin Polarization during the Yeast Mating Response. Molecular Biology of the Cell, 2009, 20, 2909-2919.	0.9	21
58	Kar5p Is Required for Multiple Functions in Both Inner and Outer Nuclear Envelope Fusion in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2015, 5, 111-121.	0.8	20
59	Membrane curvature directs the localization of Cdc42p to novel foci required for cell–cell fusion. Journal of Cell Biology, 2017, 216, 3971-3980.	2.3	20
60	Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling. PLoS Genetics, 2015, 11, e1005684.	1.5	19
61	Cdc42p and Fus2p act together late in yeast cell fusion. Molecular Biology of the Cell, 2012, 23, 1208-1218.	0.9	18
62	Arp10p Is a Pointed-End-associated Component of Yeast Dynactin. Molecular Biology of the Cell, 2006, 17, 738-748.	0.9	17
63	Reciprocal regulation of nuclear import of the yeast MutS \hat{l}_{\pm} DNA mismatch repair proteins Msh2 and Msh6. DNA Repair, 2009, 8, 739-751.	1.3	17
64	ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating. Molecular Biology of the Cell, 2013, 24, 3896-3908.	0.9	17
65	ER-associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p-independent homotypic ER fusion pathway. Molecular Biology of the Cell, 2014, 25, 3401-3412.	0.9	16
66	Alanine Scanning of Arp1 Delineates a Putative Binding Site for Jnm1/Dynamitin and Nip100/p150Glued. Molecular Biology of the Cell, 2005, 16, 3999-4012.	0.9	11
67	A mechanism for the coordination of proliferation and differentiation by spatial regulation of Fus2p in budding yeast. Genes and Development, 2012, 26, 1110-1121.	2.7	10
68	MutS $\hat{l}\pm$ mismatch repair protein stability is governed by subunit interaction, acetylation, and ubiquitination. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	10
69	Kel1p Mediates Yeast Cell Fusion Through a Fus2p- and Cdc42p-Dependent Mechanism. Genetics, 2016, 202, 1421-1435.	1.2	9
70	Cell fusion in yeast is negatively regulated by components of the cell wall integrity pathway. Molecular Biology of the Cell, 2019, 30, 441-452.	0.9	8
71	An Amphiphysin-Like Domain in Fus2p Is Required for Rvs161p Interaction and Cortical Localization. G3: Genes, Genomes, Genetics, 2016, 6, 337-349.	0.8	7
72	Acid loops fail the acid test. Cell, 1991, 65, 919-920.	13.5	4

#	Article	IF	CITATIONS
73	Cla4p Kinase Activity Is Down-Regulated by Fus3p during Yeast Mating. Biomolecules, 2022, 12, 598.	1.8	4
74	Identification and characterization of CEN12 in the budding yeast Saccharomyces cerevisiae. Current Genetics, 1995, 28, 512-516.	0.8	3
75	Differential Requirement for the Cell Wall Integrity Sensor Wsc1p in Diploids Versus Haploids. Journal of Fungi (Basel, Switzerland), 2021, 7, 1049.	1.5	1
76	Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae. Experimental Cell Research, 2017, 358, 390-396.	1,2	0