Margaret A Goodell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7713029/publications.pdf

Version: 2024-02-01

245 papers

28,182 citations

9264 74 h-index 163

260 all docs 260 docs citations

times ranked

260

27903 citing authors

g-index

#	Article	IF	CITATIONS
1	Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo Journal of Experimental Medicine, 1996, 183, 1797-1806.	8.5	2,739
2	Effects of an Rb mutation in the mouse. Nature, 1992, 359, 295-300.	27.8	1,730
3	Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 2001, 107, 1395-1402.	8.2	1,716
4	A distinct "side population―of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14228-14233.	7.1	1,226
5	Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Medicine, 1997, 3, 1337-1345.	30.7	1,075
6	Dnmt3a is essential for hematopoietic stem cell differentiation. Nature Genetics, 2012, 44, 23-31.	21.4	916
7	Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14482-14486.	7.1	879
8	Quiescent haematopoietic stem cells are activated by IFN- \hat{l}^3 in response to chronic infection. Nature, 2010, 465, 793-797.	27.8	756
9	Aging Hematopoietic Stem Cells Decline in Function and Exhibit Epigenetic Dysregulation. PLoS Biology, 2007, 5, e201.	5.6	677
10	mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature, 2014, 510, 393-396.	27.8	599
11	Epigenomic Profiling of Young and Aged HSCs Reveals Concerted Changes during Aging that Reinforce Self-Renewal. Cell Stem Cell, 2014, 14, 673-688.	11.1	524
12	Distinct Hematopoietic Stem Cell Subtypes Are Differentially Regulated by TGF-Î ² 1. Cell Stem Cell, 2010, 6, 265-278.	11.1	492
13	Sca-1pos Cells in the Mouse Mammary Gland Represent an Enriched Progenitor Cell Population. Developmental Biology, 2002, 245, 42-56.	2.0	491
14	Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nature Reviews Immunology, 2011, 11, 685-692.	22.7	470
15	Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1341-1346.	7.1	431
16	Failure of Bone Marrow Cells to Transdifferentiate into Neural Cells in Vivo. Science, 2002, 297, 1299-1299.	12.6	379
17	Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nature Medicine, 2003, 9, 1520-1527.	30.7	379
18	DNMT3A in haematological malignancies. Nature Reviews Cancer, 2015, 15, 152-165.	28.4	379

#	Article	IF	CITATIONS
19	A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood, 2001, 98, 1166-1173.	1.4	314
20	Inflammatory signals regulate hematopoietic stem cells. Trends in Immunology, 2011, 32, 57-65.	6.8	310
21	Molecular Signatures of Proliferation and Quiescence in Hematopoietic Stem Cells. PLoS Biology, 2004, 2, e301.	5.6	309
22	Dnmt3a and Dnmt3b Have Overlapping and Distinct Functions in Hematopoietic Stem Cells. Cell Stem Cell, 2014, 15, 350-364.	11.1	288
23	Hematopoietic Fingerprints: An Expression Database of Stem Cells and Their Progeny. Cell Stem Cell, 2007, 1, 578-591.	11.1	279
24	Mouse hematopoietic stem cell identification and analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 14-24.	1.5	277
25	Large conserved domains of low DNA methylation maintained by Dnmt3a. Nature Genetics, 2014, 46, 17-23.	21.4	276
26	MOABS: model based analysis of bisulfite sequencing data. Genome Biology, 2014, 15, R38.	9.6	272
27	PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell, 2018, 23, 700-713.e6.	11.1	272
28	Stem cells and healthy aging. Science, 2015, 350, 1199-1204.	12.6	268
29	The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood, 2007, 109, 1736-1742.	1.4	233
30	Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood, 2012, 119, 2500-2509.	1.4	227
31	Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Cell Reports, 2016, 17, 1453-1461.	6.4	223
32	Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. Journal of Clinical Investigation, 2003, 111, 71-79.	8.2	221
33	Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. Journal of Clinical Investigation, 2004, 113, 1266-1270.	8.2	216
34	Mutant NPM1 Maintains the Leukemic State through HOX Expression. Cancer Cell, 2018, 34, 499-512.e9.	16.8	209
35	Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood, 2015, 125, 629-638.	1.4	206
36	DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nature Genetics, 2016, 48, 1014-1023.	21.4	200

#	Article	IF	Citations
37	Stem Cell Plasticity in Muscle and Bone Marrow. Annals of the New York Academy of Sciences, 2001, 938, 208-220.	3.8	172
38	Less Is More: Unveiling the Functional Core of Hematopoietic Stem Cells through Knockout Mice. Cell Stem Cell, 2012, 11, 302-317.	11.1	164
39	Primitive adult hematopoietic stem cells can function as osteoblast precursors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15877-15882.	7.1	159
40	Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature, 2015, 521, E1-E4.	27.8	159
41	Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells InÂVivo. Cell Reports, 2018, 23, 1-10.	6.4	159
42	Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nature Communications, 2017, 8, 16026.	12.8	158
43	A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells. Blood, 2013, 122, 4086-4089.	1.4	153
44	DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biology, 2017, 18, 176.	8.8	153
45	Long Non-Coding RNAs Control Hematopoietic Stem Cell Function. Cell Stem Cell, 2015, 16, 426-438.	11.1	147
46	Acute loss of TET function results in aggressive myeloid cancer in mice. Nature Communications, 2015, 6, 10071.	12.8	147
47	Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nature Reviews Molecular Cell Biology, 2015, 16, 299-309.	37.0	142
48	DNMT3A in Leukemia. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a030320.	6.2	135
49	Hoechst dye efflux reveals a novel CD7+CD34â^' lymphoid progenitor in human umbilical cord blood. Blood, 2000, 96, 2125-2133.	1.4	126
50	Ten-Eleven Translocation 1 (Tet1) Is Regulated by O-Linked N-Acetylglucosamine Transferase (Ogt) for Target Gene Repression in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2013, 288, 20776-20784.	3.4	125
51	The p47 GTPase Lrg-47 (Irgm1) Links Host Defense and Hematopoietic Stem Cell Proliferation. Cell Stem Cell, 2008, 2, 83-89.	11.1	124
52	DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biology, 2018, 19, 88.	8.8	120
53	Adult Hematopoietic Stem and Progenitor Cells Require Either Lyl1 or Scl for Survival. Cell Stem Cell, 2009, 4, 180-186.	11.1	117
54	Hematopoietic stem cells do not engraft with absolute efficiencies. Blood, 2006, 107, 501-507.	1.4	114

#	Article	IF	CITATIONS
55	CD150â^' side population cells represent a functionally distinct population of long-term hematopoietic stem cells. Blood, 2008, 111, 2444-2451.	1.4	113
56	Cells of the hepatic side population contribute to liver regeneration and can be replenished with bone marrow stem cells. Haematologica, 2003, 88, 368-78.	3.5	112
57	The pogo transposable element family of Drosophila melanogaster. Molecular Genetics and Genomics, 1992, 232, 126-134.	2.4	111
58	Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Proliferation, 2004, 37, 55-65.	5.3	111
59	Roles of Sca-1 in hematopoietic stem/progenitor cell function. Experimental Hematology, 2005, 33, 836-843.	0.4	108
60	Flow cytometry analysis of murine hematopoietic stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 27-37.	1.5	107
61	DOT1L as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid leukemia. Blood, 2016, 128, 971-981.	1.4	107
62	DNMT3A Loss Drives Enhancer Hypomethylation in FLT3-ITD-Associated Leukemias. Cancer Cell, 2016, 29, 922-934.	16.8	107
63	Oncometabolite $\langle scp \rangle d \langle scp \rangle$ -2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10436-10441.	7.1	105
64	CD34+ or CD34â^: Does it Really Matter?. Blood, 1999, 94, 2545-2547.	1.4	102
65	Isolation and characterization of functional mammary gland stem cells. Cell Proliferation, 2003, 36, 17-32.	5.3	96
66	Homeobox oncogene activation by pan-cancer DNA hypermethylation. Genome Biology, 2018, 19, 108.	8.8	94
67	Stem-cell "plasticity― befuddled by the muddle. Current Opinion in Hematology, 2003, 10, 208-213.	2.5	92
68	Phenotype and hematopoietic potential of side population cells throughout embryonic development. Blood, 2003, 102, 2436-2443.	1.4	92
69	Isolation and Characterization of Side Population Cells. , 2005, 290, 343-352.		92
70	Skeletal Muscle Fiberâ€Specific Green Autofluorescence: Potential for Stem Cell Engraftment Artifacts. Stem Cells, 2004, 22, 180-187.	3.2	89
71	The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nature Cell Biology, 2010, 12, 1213-1219.	10.3	88
72	Retroviral vector insertion sites associated with dominant hematopoietic clones mark "stemness― pathways. Blood, 2007, 109, 1897-1907.	1.4	87

#	Article	IF	CITATIONS
73	Hematopoietic Stem Cell Aging: Wrinkles In Stem Cell Potential. Stem Cell Reviews and Reports, 2007, 3, 201-211.	5.6	84
74	Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome. PLoS Genetics, 2012, 8, e1002692.	3.5	80
75	Somatic stem cell plasticity. Experimental Hematology, 2001, 29, 1361-1370.	0.4	79
76	Taking stock and planning for the next decade: Realistic prospects for stem cell therapies for the nervous system. Journal of Neuroscience Research, 2004, 76, 157-168.	2.9	76
77	Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Experimental Hematology, 2010, 38, 403-416.	0.4	76
78	Polymorphic Allele of Human IRGM1 Is Associated with Susceptibility to Tuberculosis in African Americans. PLoS ONE, 2011, 6, e16317.	2.5	76
79	Imprinted Genes That Regulate Early Mammalian Growth Are Coexpressed in Somatic Stem Cells. PLoS ONE, 2011, 6, e26410.	2.5	75
80	The therapeutic potential of stem cells from adults. BMJ: British Medical Journal, 2002, 325, 372-376.	2.3	74
81	Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood, 2011, 118, 1525-1533.	1.4	72
82	Large DNA Methylation Nadirs Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Molecular Cell, 2020, 78, 506-521.e6.	9.7	72
83	Mechanisms of hematopoietic stem cell aging. Experimental Gerontology, 2010, 45, 286-290.	2.8	71
84	Hematopoietic Stem Cell Development. Current Topics in Developmental Biology, 2014, 107, 39-75.	2.2	70
85	Realistic Prospects for Stem Cell Therapeutics. Hematology American Society of Hematology Education Program, 2003, 2003, 398-418.	2.5	69
86	Clonal Hematopoiesis: Mechanisms Driving Dominance of Stem Cell Clones. Blood, 2020, 136, 1590-1598.	1.4	67
87	Plasticity and Tissue Regenerative Potential of Bone Marrow-Derived Cells. Stem Cell Reviews and Reports, 2005, 1, 065-070.	5.6	64
88	Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. ELife, 2019, 8, .	6.0	64
89	Purification of Hematopoietic Stem Cells Using the Side Population. Methods in Enzymology, 2006, 420, 255-264.	1.0	53
90	Altered phenotype and reduced function of muscle-derived hematopoietic stem cells. Experimental Hematology, 2003, 31, 806-814.	0.4	51

#	Article	IF	CITATIONS
91	Stem Cell Identification and Sorting Using the Hoechst 33342 Side Population (SP). Current Protocols in Cytometry, 2005, 34, Unit9.18.	3.7	51
92	Hematopoietic Stem Cell Characterization and Isolation. Methods in Molecular Biology, 2011, 750, 47-59.	0.9	51
93	The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors. Nature Immunology, 2012, 13, 761-769.	14.5	50
94	CD81 Is Essential for the Re-entry of Hematopoietic Stem Cells to Quiescence following Stress-Induced Proliferation Via Deactivation of the Akt Pathway. PLoS Biology, 2011, 9, e1001148.	5.6	49
95	Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes. Experimental Hematology, 2016, 44, 740-744.	0.4	48
96	Bringing cardiovascular cell-based therapy to clinical application: Perspectives based on a National Heart, Lung, and Blood Institute Cell Therapy Working Group meeting. American Heart Journal, 2007, 153, 732-742.	2.7	45
97	DNA methylation and de-methylation using hybrid site-targeting proteins. Genome Biology, 2018, 19, 187.	8.8	45
98	Environmental influences on clonal hematopoiesis. Experimental Hematology, 2020, 83, 66-73.	0.4	45
99	Evidence for Diversity in Transcriptional Profiles of Single Hematopoietic Stem Cells. PLoS Genetics, 2006, 2, e159.	3. 5	44
100	Mutations in the DNMT3A DNA methyltransferase in acute myeloid leukemia patients cause both loss and gain of function and differential regulation by protein partners. Journal of Biological Chemistry, 2019, 294, 4898-4910.	3.4	44
101	Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. ELife, 2020, 9, .	6.0	44
102	Transient RNA interference in hematopoietic progenitors with functional consequences. Genesis, 2003, 36, 203-208.	1.6	43
103	An Argument against a Role for Oct4 in Somatic Stem Cells. Cell Stem Cell, 2007, 1, 359-360.	11.1	42
104	Myeloproliferative Disease in Mice with Reduced Presenilin Gene Dosage: Effect of γ-Secretase Blockageâ€. Biochemistry, 2004, 43, 5352-5359.	2.5	41
105	Circulating hematopoietic stem cells do not efficiently home to bone marrow during homeostasis. Experimental Hematology, 2004, 32, 868-876.	0.4	38
106	Systematic Profiling of <i>DNMT3A</i> Variants Reveals Protein Instability Mediated by the DCAF8 E3 Ubiquitin Ligase Adaptor. Cancer Discovery, 2022, 12, 220-235.	9.4	38
107	Anti-CD45–mediated cytoreduction to facilitate allogeneic stem cell transplantation. Blood, 2003, 101, 2434-2439.	1.4	37
108	New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells. Experimental Hematology, 2014, 42, 609-617.	0.4	37

#	Article	IF	Citations
109	Promiscuous Expression of H2B-GFP Transgene in Hematopoietic Stem Cells. PLoS ONE, 2008, 3, e2357.	2.5	37
110	A combination strategy targeting enhancer plasticity exerts synergistic lethality against BETi-resistant leukemia cells. Nature Communications, 2020, 11, 740.	12.8	36
111	Pluripotentiality and Conditional Transgene Regulation in Human Embryonic Stem Cells Expressing Insulated Tetracycline-ON Transactivator. Stem Cells, 2007, 25, 2559-2566.	3.2	35
112	CD48 on hematopoietic progenitors regulates stem cells and suppresses tumor formation. Blood, 2011, 118, 80-87.	1.4	35
113	Loss of Capicua alters early T cell development and predisposes mice to T cell lymphoblastic leukemia/lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1511-E1519.	7.1	35
114	Multipotential stem cells and â€~side population' cells. Cytotherapy, 2002, 4, 507-508.	0.7	33
115	Common origins of blood and blood vessels in adults?. Differentiation, 2001, 68, 186-192.	1.9	31
116	CD81 Is Essential for HSC Self-Renewal through Suppressing Proliferation. Blood, 2008, 112, 76-76.	1.4	31
117	The disordered N-terminal domain of DNMT3A recognizes H2AK119ub and is required for postnatal development. Nature Genetics, 2022, 54, 625-636.	21.4	31
118	New insights into the biology of acute myeloid leukemia with mutated NPM1. International Journal of Hematology, 2019, 110, 150-160.	1.6	30
119	Chk1 Haploinsufficiency Results in Anemia and Defective Erythropoiesis. PLoS ONE, 2010, 5, e8581.	2.5	30
120	Stem Cell Identification and Sorting Using the Hoechst 33342 Side Population (SP). Current Protocols in Cytometry, 2005, 33, 9.18.1.	3.7	29
121	Comparative long-term effects of interferon $\hat{l}\pm$ and hydroxyurea on human hematopoietic progenitor cells. Experimental Hematology, 2015, 43, 912-918.e2.	0.4	29
122	Hoechst dye efflux reveals a novel CD7+CD34â^' lymphoid progenitor in human umbilical cord blood. Blood, 2000, 96, 2125-2133.	1.4	29
123	An in vivo propagated human acute myeloid leukemia expressing ABCA3. Leukemia Research, 2004, 28, 295-299.	0.8	28
124	Detection of Hematopoietic Stem Cells by Flow Cytometry. Methods in Cell Biology, 2011, 103, 21-30.	1.1	27
125	Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis. Blood, 2020, 135, 845-856.	1.4	27
126	Investigating the role of hematopoietic stem and progenitor cells in regulating the osteogenic differentiation of mesenchymal stem cells in vitro. Journal of Orthopaedic Research, 2011, 29, 1544-1553.	2.3	25

#	Article	IF	CITATIONS
127	Tissue-Biased Expansion of DNMT3A-Mutant Clones in a Mosaic Individual Is Associated with Conserved Epigenetic Erosion. Cell Stem Cell, 2020, 27, 326-335.e4.	11.1	25
128	Antibiotic treatment ameliorates Ten-eleven translocation 2 (TET2) loss-of-function associated hematological malignancies. Cancer Letters, 2019, 467, 1-8.	7.2	24
129	Highly Efficient Gene Disruption of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Journal of Visualized Experiments, 2018, , .	0.3	23
130	Identification and Characterization of Side Population Cells in Embryonic Stem Cell Cultures. Stem Cells and Development, 2009, 18, 1155-1166.	2.1	21
131	Differential mRNA Processing in Hematopoietic Stem Cells. Stem Cells, 2006, 24, 662-670.	3.2	20
132	Efficacy of delayed administration of post-chemotherapy granulocyte colony-stimulating factor: evidence from murine studies of bone marrow cell kinetics. Experimental Hematology, 2008, 36, 9-16.	0.4	20
133	Isolation and Characterization of Mouse Side Population Cells. Methods in Molecular Biology, 2013, 946, 151-162.	0.9	20
134	It's All About MEis: Menin-MLL Inhibition Eradicates NPM1-Mutated and MLL-Rearranged Acute Leukemias in Mice. Cancer Cell, 2020, 37, 267-269.	16.8	20
135	The push and pull of DNA methylation. Science, 2021, 372, 128-129.	12.6	20
136	Complementâ€Fixing CD45 Monoclonal Antibodies to Facilitate Stem Cell Transplantation in Mouse and Man. Annals of the New York Academy of Sciences, 2003, 996, 80-88.	3.8	19
137	Adenoviral transduction of mouse hematopoietic stem cells. Molecular Therapy, 2003, 7, 334-340.	8.2	19
138	Gpr171, a putative P2Y-like receptor, negatively regulates myeloid differentiation in murine hematopoietic progenitors. Experimental Hematology, 2013, 41, 102-112.	0.4	19
139	Techniques for the Study of Adult Stem Cells: Be Fruitful and Multiply. BioTechniques, 2003, 34, 572-591.	1.8	18
140	Response: The CD150high compartment is not the exclusive reservoir of LT-HSCs within the bone marrow. Blood, 2008, 111, 4414-4415.	1.4	18
141	Perspectives and future directions for epigenetics in hematology. Blood, 2013, 121, 5131-5137.	1.4	17
142	TIMP-1 deficiency subverts cell-cycle dynamics in murine long-term HSCs. Blood, 2011, 117, 6479-6488.	1.4	16
143	Gpr171, a Putative P2Y-Like Receptor, Counteracts Monocyte Lineage Specification When Over-Expressed In Murine Hematopoietic Progenitors Blood, 2010, 116, 3758-3758.	1.4	16
144	Comparison of Cesium-137 and X-ray Irradiators by Using Bone Marrow Transplant Reconstitution in C57BL/6J Mice. Comparative Medicine, 2015, 65, 165-72.	1.0	16

#	Article	IF	CITATIONS
145	Stem cells: is there a future in plastics?. Current Opinion in Cell Biology, 2001, 13, 662-665.	5.4	15
146	Perturbed hematopoiesis in individuals with germline DNMT3A overgrowth Tatton-Brown-Rahman syndrome. Haematologica, 2022, 107, 887-898.	3.5	15
147	Use of CD9 expression to enrich for porcine hematopoietic progenitors. Experimental Hematology, 2002, 30, 809-815.	0.4	14
148	Selective elimination of a chemoresistant side population of B-CLL cells by cytotoxic T lymphocytes in subjects receiving an autologous hCD40L/IL-2 tumor vaccine. Leukemia, 2010, 24, 563-572.	7.2	14
149	Constitutive loss of DNMT3A causes morbid obesity through misregulation of adipogenesis. ELife, 0, 11 ,	6.0	12
150	WIP1 dephosphorylation of p27Kip1 Serine 140 destabilizes p27Kip1 and reverses anti-proliferative effects of ATM phosphorylation. Cell Cycle, 2020, 19, 479-491.	2.6	11
151	Noncoding Regulatory RNAs in Hematopoiesis. Current Topics in Developmental Biology, 2016, 118, 245-270.	2.2	10
152	Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia, 2021, 35, 1949-1963.	7.2	10
153	LYL1 Degradation by the Proteasome Is Directed by a N-Terminal PEST Rich Site in a Phosphorylation-Independent Manner. PLoS ONE, 2010, 5, e12692.	2.5	8
154	Parental Permissions: H19 and Keeping the Stem Cell Progeny under Control. Cell Stem Cell, 2013, 13, 137-138.	11.1	8
155	Response to Comment on "Failure of Bone Marrow Cells to Transdifferentiate into Neural Cells in Vivo". Science, 2003, 299, 1184c-1184.	12.6	7
156	A new allele of Lyl1 confirms its important role in hematopoietic stem cell function. Genesis, 2011, 49, 441-448.	1.6	7
157	The Hematopoietic Expression Viewer: expanding mobile apps as a scientific tool. Bioinformatics, 2012, 28, 1941-1942.	4.1	7
158	Stem Cells and Aging: What's Next?. Cell Stem Cell, 2015, 16, 578-581.	11.1	7
159	Mutant <i>Idh2</i> Cooperates with a <i>NUP98-HOXD13</i> Fusion to Induce Early Immature Thymocyte Precursor ALL. Cancer Research, 2021, 81, 5033-5046.	0.9	7
160	Molecular Profiling of Hematopoietic Stem Cells. Methods in Molecular Medicine, 2007, 134, 1-16.	0.8	7
161	Dnmt3a Is Essential for Hematopoietic Stem Cell Differentiation. Blood, 2011, 118, 386-386.	1.4	7
162	The expansion of T-cells and hematopoietic progenitors as a result of overexpression of the lymphoblastic leukemia gene, Lyl1 can support leukemia formation. Leukemia Research, 2011, 35, 405-412.	0.8	6

#	Article	IF	CITATIONS
163	Modeling <i>IKZF1</i> lesions in B-ALL reveals distinct chemosensitivity patterns and potential therapeutic vulnerabilities. Blood Advances, 2021, 5, 3876-3890.	5.2	6
164	Disseminated Mycobacterium Avium Infection Accelerates Hematopoietic Stem Cell Exhaustion,. Blood, 2012, 120, 2365-2365.	1.4	6
165	PPM1D in Solid and Hematologic Malignancies: Friend <i>and</i> Foe?. Molecular Cancer Research, 2022, 20, 1365-1378.	3.4	6
166	Enhanced Generation of Myeloid Lineages in Hematopoietic Differentiation from Embryonic Stem Cells by Silencing Transcriptional Repressor Twist-2. Cloning and Stem Cells, 2009, 11, 523-533.	2.6	5
167	Selective depletion of a minor subpopulation of B-chronic lymphocytic leukemia cells is followed by a delayed but progressive loss of bulk tumor cells and disease regression. Molecular Cancer, 2009, 8, 106.	19.2	5
168	Ataxin1L Is a Regulator of HSC Function Highlighting the Utility of Cross-Tissue Comparisons for Gene Discovery. PLoS Genetics, 2013, 9, e1003359.	3.5	5
169	Genome-Wide Analysis of DNA Methylation in Hematopoietic Cells: DNA Methylation Analysis by WGBS. Methods in Molecular Biology, 2017, 1633, 137-149.	0.9	5
170	Dnmt3b Has Few Specific Functions In Adult Hematopoietic Stem Cells But Shows Abnormal Activity In The Absence Of Dnmt3a. Blood, 2013, 122, 734-734.	1.4	5
171	CRLF2 Overexpression Demonstrates Enhanced Leukemogenicity in Down Syndrome Hematopoietic Cells. Blood, 2016, 128, 2708-2708.	1.4	5
172	Tracing the Origin of Non-Hematopoietic Cells Using CD45 PCR Restriction Fragment Length Polymorphisms. BioTechniques, 2003, 34, 160-162.	1.8	4
173	Bridge Over Troubled Stem Cells. Molecular Therapy, 2011, 19, 1756-1758.	8.2	4
174	Dynamic DNA methylation discovered during HSC differentiation. Cell Cycle, 2015, 14, 693-694.	2.6	4
175	Introduction to a review series on hematopoietic stem cells. Blood, 2015, 125, 2587-2587.	1.4	4
176	Where There's Smoke, There's Fire: Inflammation Drives MDS. Trends in Immunology, 2020, 41, 558-560.	6.8	4
177	Lyl1 and Scl Dosage Is Critical for Adult Hematopoietic Stem Cell Function and Survival. Blood, 2008, 112, 281-281.	1.4	4
178	Two-Pronged Cell Therapy for B-Cell Malignancies: Engineering NK Cells to Target CD22 and Redirect Bystander T Cells to CD19. Blood, 2016, 128, 4560-4560.	1.4	4
179	The P47 GTPase Lrg-47 Links Host Defense and HSC Proliferation Blood, 2007, 110, 640-640.	1.4	4
180	Role of Cohesin-Resolving Protease, Separase, In Hematopoiesis Blood, 2010, 116, 1593-1593.	1.4	4

#	Article	IF	Citations
181	Stem Cell Identification and Sorting Using the Hoechst 33342 Side Population (SP). Current Protocols in Cytometry, 2002, 19, 9.18.1.	3.7	3
182	Confounding by Repetitive Elements and CpG Islands Does Not Explain the Association between Hypomethylation and Genomic Instability. PLoS Genetics, 2013, 9, e1003333.	3.5	3
183	Epigenetics in hematology: introducing a collection of reviews. Blood, 2013, 121, 3059-3060.	1.4	3
184	Loss of De Novo DNA Methylation Causes Expansion of the Mouse Hematopoietic Stem Cell Pool. Blood, 2010, 116, 835-835.	1.4	3
185	Mixed Phenotype Acute Leukemia (MPAL) Has a High Frequency of Mutations in Epigenetic Regulatory Genes: Results from Whole Exome Sequencing. Blood, 2014, 124, 3560-3560.	1.4	3
186	DNA Epigenome Editing Using Crispr-Cas Suntag-Directed DNMT3A. Blood, 2016, 128, 2707-2707.	1.4	3
187	Clonal Hematopoiesis Analyses in Clinical, Epidemiologic, and Genetic Aging Studies to Unravel Underlying Mechanisms of Age-Related Dysfunction in Humans. Frontiers in Aging, 2022, 3, .	2.6	3
188	Side Population Phenotype. , 2004, , 329-336.		2
189	Rising from the crypt: decreasing DNA methylation during differentiation of the small intestine. Genome Biology, 2013, 14, 116.	8.8	2
190	Salutary Effect of Pegylated Interferona in PV and ET As Evaluated by Quantitation of Pre-JAK2V617F and JAK2V617F-Bearing Stem Cells and Granulocytes and Correlation with Circulating Regulatory T Cells and HSC Cell Cycle Status. Blood, 2012, 120, 807-807.	1.4	2
191	Dnmt3a Deletion and FLT3-ITD Cooperate in a Mouse Model of T-Lymphoblastic Leukemia (T-ALL) Blood, 2012, 120, 2428-2428.	1.4	2
192	Nearly a Third of Clonal Hematopoiesis-Associated DNMT3A Mutations Reduce Protein Stability and May be Associated with Poorer Prognosis. Blood, 2018, 132, 1315-1315.	1.4	2
193	Targeting Activated Signaling Pathways for the Treatment of IKZF1-Deleted B Lymphoblastic Leukemia. Blood, 2019, 134, 3789-3789.	1.4	2
194	EDITORIAL RETRACTION. Stem Cells, 2006, 24, 804-804.	3.2	1
195	Reply to Hérodin and Drouet: "Myeloprotection Following Cytotoxic Damage: The Sooner the Better― Experimental Hematology, 2008, 36, 771-772.	0.4	1
196	Hematopoietic Stem Cell Properties, Markers, and Therapeutics. , 2011, , 273-284.		1
197	Single-cell technology meets hematology: introduction to a review series. Blood, 2019, 133, 1387-1388.	1.4	1
198	Precise Modeling of IKZF1 Alterations in Human B-Cell Acute Lymphoblastic Leukemia Cell Lines Reveals Distinct Chemosensitivity, Homing, and Engraftment Properties. Blood, 2018, 132, 549-549.	1.4	1

#	Article	IF	CITATIONS
199	The Lymphoblastic Leukemia Gene 1 (Lyl1) Regulates Lymphoid Specification and Maintenance of Early T Lineage Progenitors. Blood, 2011, 118, 548-548.	1.4	1
200	Dnmt3a-Deletion Accelerates FLT3-ITD Malignancies In Mice By Hypomethylation Of Enhancer Sites and Activating Stem Cell Programs; Implications For Therapy. Blood, 2013, 122, 595-595.	1.4	1
201	Enforced Nr4a2 expression Drives HSCs into Quiescence Blood, 2008, 112, 1326-1326.	1.4	1
202	The Nucleotide Kinase Nadk Is Required for ROS Detoxification and Constitutes a Metabolic Vulnerability of NOTCH1-Driven T-ALL. Blood, 2018, 132, 2615-2615.	1.4	1
203	Targeting signaling pathways vulnerabilities for the treatment of IKZF1-deleted ph-negative B lymphoblastic leukemia Journal of Clinical Oncology, 2022, 40, 7033-7033.	1.6	1
204	Open Access, Rapid Publishing: No Longer a Thing of the Future. Stem Cells, 2005, 23, 456-457.	3.2	0
205	Direct Conversion of Skin Cells into Blood: Alchemy or Science?. Molecular Therapy, 2011, 19, 227-228.	8.2	0
206	A gallon of sweat to make a pint of blood. Journal of Experimental Medicine, 2014, 211, 1271-1272.	8.5	0
207	Measure Twice, Cut Once: Therapeutic Editing of HSPCs Requires Precise Planning. Cell Stem Cell, 2019, 24, 511-512.	11.1	0
208	Muscle-derived Hematopoietic Stem Cells. , 2004, , 405-413.		0
209	Expression Profile of Aging Hematopoietic Stem Cells Blood, 2004, 104, 562-562.	1.4	0
210	Lineage Fingerprints: The Transcriptome of the Hematopoietic System Blood, 2005, 106, 1741-1741.	1.4	0
211	Expression of Runx1 Isoforms in Sub-Populations of Human Blood and Bone Marrow Cells Blood, 2005, 106, 4244-4244.	1.4	0
212	Immune Responses Are Induced Against Side-Population B-CLL "Stem Cells ―by Patient Vaccination with hCD40L/IL2 Gene Modified Tumor Cells Blood, 2006, 108, 2552-2552.	1.4	0
213	Hematopoietic Progenitor Cells. , 2008, , .		0
214	Dysregulation of Hematopoietic Stem Cells with Age Blood, 2008, 112, sci-2-sci-2.	1.4	0
215	Chk1 Haploinsufficiency Results in Anemia and Defective Erythropoiesis. Blood, 2008, 112, 3457-3457.	1.4	0
216	The Side Population Contains Functionally Distinct Hematopoietic Stem Cell Subpopulations. Blood, 2008, 112, 2464-2464.	1.4	0

#	Article	IF	CITATIONS
217	Selective Loss of a Putative Precursor Population of B-Chronic Lymphocytic Leukemia Cells Following Immunization with hCD40L/IL-2 Expressing Autologous Tumor Cells. Blood, 2008, 112, 3172-3172.	1.4	0
218	Overexpression of the TGF-Beta Modulator .Bambi Promotes Hematopoetic Stem Cell Proliferation Blood, 2009, 114, 1446-1446.	1.4	0
219	Interferon-Gamma Is a Critical Regulator of the Hematopoietic Stem Cell Response to Chronic Infection Blood, 2009, 114, 2549-2549.	1.4	0
220	TIMP-1 Deficiency Subverts Cell Cycle Dynamics in Long-Term HSCs Blood, 2009, 114, 2514-2514.	1.4	0
221	TIMP-1 Deficiency Subverts Cell Cycle Dynamics In HSCs Blood, 2010, 116, 1545-1545.	1.4	0
222	Genome Wide DNA Methylation and Transcriptome Analysis in HSC Aging. Blood, 2011, 118, 2367-2367.	1.4	0
223	Hematopoietic Stem Cells. Series in Medical Physics and Biomedical Engineering, 2011, , 53-72.	0.1	0
224	HSC Aging Epigenome: Widespread Alterations in DNA Methylation and Transcription Blood, 2012, 120, 2329-2329.	1.4	0
225	Dnmt3b Is Dispensable for Hematopoietic Stem Cell Differentiation, but Acts Synergistically with Dnmt3a to Control the Balance Between Self-Renewal and Differentiation. Blood, 2012, 120, 848-848.	1.4	0
226	Histone Alterations Are Associated with Hematopoietic Stem Cell (HSC) Differentiation and Aging. Blood, 2012, 120, 1188-1188.	1.4	0
227	Long Non-Coding RNAs Control Hematopoietic Stem Cells (HSC) Function. Blood, 2013, 122, 48-48.	1.4	0
228	Large Conserved Domains Of Low DNA Methylation Maintained By 5-Hydroxymethycytosine and Dnmt3a. Blood, 2013, 122, 2406-2406.	1.4	0
229	Combined Effect Of Dnmt3a Loss-Of-Function and Idh2 neomorphic mutation Promotes Hematopoietic Malignancy. Blood, 2013, 122, 884-884.	1.4	0
230	Hemopoietic Stem Cells In Polycythemia Vera and Essential Thrombocythemia Have Increased TNF-Alpha That Decreases After Pegylated Interferon-a Therapy, But Not Hydroxyurea, and Correlates With Suppression Of PV and ET Clones. Blood, 2013, 122, 2827-2827.	1.4	0
231	Dnmt3a Deletion Predisposes Hematopoietic Stem Cells To Malignant Transformation. Blood, 2013, 122, 4198-4198.	1.4	0
232	Pegifna Promotes Proliferation and Myeloid Differentiation In Human Hematopoietic Progenitors In Patients With Polycythemia Vera and Essential Thrombocythemia. Blood, 2013, 122, 2843-2843.	1.4	0
233	DOT1L As a Therapeutic Target for the Treatment of DNMT3A-Mutant Acute Myeloid Leukemia. Blood, 2014, 124, 614-614.	1.4	0
234	Regulation of Hematopoietic Stem Cells by Interferons and by DNA Methylation: Implications for Bone Marrow Failure. Blood, 2014, 124, SCI-20-SCI-20.	1.4	0

#	Article	IF	CITATIONS
235	Abstract 385: D-2-hydroxyglutaric acid Acutely Impairs Oxidative Decarboxylation in the Heart. Circulation Research, 2015, 117, .	4.5	0
236	High Order Chromatin Structure Regulates Gene Expression in Hematopoietic Stem Cell Self-Renewal and Erythroid Differentiation. Blood, 2016, 128, 1033-1033.	1.4	0
237	Crispr Engineering in CD34+ Progenitors Reveals Cis-Acting Regulatory Regions Mediating 3D Interactions and Stem Cell Fate Decisions. Blood, 2016, 128, 1466-1466.	1.4	O
238	Acute Myeloid Leukemia with Mutated <i>NPM1</i> Is Dependent on the Cytoplasmic Localization of NPM1c. Blood, 2017, 130, 877-877.	1.4	0
239	Antibiotics Treatment Ameliorates TET2 Loss of Function Associated Hematological Malignancies. Blood, 2018, 132, 2610-2610.	1.4	O
240	High Prevalence of PPM1D Mutations in Therapy-Related AML/MDS Is Due to Context-Specific Clonal Hematopoiesis. Blood, 2018, 132, 746-746.	1.4	0
241	Mosaic DNMT3A Germline Mutation As a Model for Mutant DNMT3A Competitive Advantage in the Blood Lineage. Blood, 2018, 132, 173-173.	1.4	O
242	Large DNA Methylation Canyons Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Blood, 2018, 132, 534-534.	1.4	0
243	Single Cell Profiling of DNMT3A-Mutant Progenitors Reveals LY86 As a Novel Pre-Leukemia Marker and Potential Therapeutic Target. Blood, 2019, 134, 2724-2724.	1.4	О
244	Tet2 Deficiency Rejuvenates Hematopoietic Stem and Progenitor Cells during Ageing. Blood, 2020, 136, 37-37.	1.4	0
245	Subclonal Complexity in Myeloid Malignancies and Mechanism of Selection and Resistance. Blood, 2020, 136, SCI5-SCI5.	1.4	O