
John J Yackel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7712763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960–2008 and 1968–2008. Journal of Geophysical Research, 2011, 116, .	3.3	116
2	Sea ice type and open water discrimination using dual co-polarized C-band SAR. Canadian Journal of Remote Sensing, 2009, 35, 73-84.	2.4	96
3	Local and regional albedo observations of arctic first-year sea ice during melt ponding. Journal of Geophysical Research, 2001, 106, 1005-1016.	3.3	66
4	Melt ponds on sea ice in the Canadian Archipelago: 2. On the use of RADARSAT-1 synthetic aperture radar for geophysical inversion. Journal of Geophysical Research, 2000, 105, 22061-22070.	3.3	65
5	Effect of Snow Salinity on CryoSatâ€2 Arctic First‥ear Sea Ice Freeboard Measurements. Geophysical Research Letters, 2017, 44, 10,419.	4.0	63
6	Surface-Based Polarimetric C-Band Scatterometer for Field Measurements of Sea Ice. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 3405-3416.	6.3	62
7	Evaluation of C-band SAR polarimetric parameters for discrimination of first-year sea ice types. Canadian Journal of Remote Sensing, 2012, 38, 306-323.	2.4	53
8	Application of a SeaWinds/QuikSCAT sea ice melt algorithm for assessing melt dynamics in the Canadian Arctic Archipelago. Journal of Geophysical Research, 2006, 111, .	3.3	48
9	The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission. Cryosphere, 2020, 14, 2235-2251.	3.9	48
10	All-Season Compact-Polarimetry C-band SAR Observations of Sea Ice. Canadian Journal of Remote Sensing, 2015, 41, 485-504.	2.4	47
11	A vessel transit assessment of sea ice variability in the Western Arctic, 1969–2002: implications for ship navigation. Canadian Journal of Remote Sensing, 2004, 30, 205-215.	2.4	45
12	First-year sea ice spring melt transitions in the Canadian Arctic Archipelago from time-series synthetic aperture radar data, 1992–2002. Hydrological Processes, 2007, 21, 253-265.	2.6	43
13	Incidence Angle Dependence of HH-Polarized C- and L-Band Wintertime Backscatter Over Arctic Sea Ice. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 6686-6698.	6.3	43
14	On the estimation of spring melt in the North Water polynya using RADARSATâ€1. Atmosphere - Ocean, 2001, 39, 195-208.	1.6	40
15	Changing sea ice melt parameters in the Canadian Arctic Archipelago: Implications for the future presence of multiyear ice. Journal of Geophysical Research, 2008, 113, .	3.3	38
16	Multiâ€year seaâ€ice conditions in the western Canadian arctic archipelago region of the northwest passage: 1968–2006. Atmosphere - Ocean, 2008, 46, 229-242.	1.6	38
17	Dielectric properties of brine-wetted snow on first-year sea ice. Cold Regions Science and Technology, 2009, 58, 47-56.	3.5	37
18	Sensitivity of C-band synthetic aperture radar polarimetric parameters to snow thickness over landfast smooth first-year sea ice. Remote Sensing of Environment, 2015, 166, 34-49.	11.0	34

JOHN J YACKEL

#	Article	IF	CITATIONS
19	Observations of sea surface <i>f</i> CO ₂ distributions and estimated airâ€sea CO ₂ fluxes in the Hudson Bay region (Canada) during the open water season. Journal of Geophysical Research, 2008, 113, .	3.3	33
20	Detection of melt onset over the northern Canadian Arctic Archipelago sea ice from RADARSAT, 1997–2014. Remote Sensing of Environment, 2016, 178, 59-69.	11.0	33
21	Ku-, X- and C-band measured and modeled microwave backscatter from a highly saline snow cover on first-year sea ice. Remote Sensing of Environment, 2016, 187, 62-75.	11.0	29
22	Comparing L- and C-band synthetic aperture radar estimates of sea ice motion over different ice regimes. Remote Sensing of Environment, 2018, 204, 380-391.	11.0	29
23	Observations of Snow Water Equivalent Change on Landfast First-Year Sea Ice in Winter Using Synthetic Aperture Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 1005-1015.	6.3	28
24	Application of satellite remote sensing techniques for estimating air–sea CO2 fluxes in Hudson Bay, Canada during the ice-free season. Remote Sensing of Environment, 2008, 112, 3550-3562.	11.0	27
25	Physical, dielectric, and C band microwave scattering properties of firstâ€year sea ice during advanced melt. Journal of Geophysical Research, 2010, 115, .	3.3	26
26	Geophysical controls on C band polarimetric backscatter from melt pond covered Arctic firstâ€year sea ice: Assessment using highâ€resolution scatterometry. Journal of Geophysical Research, 2012, 117, .	3.3	23
27	Origins and Levels of Seasonal Forecast Skill for Sea Ice in Hudson Bay Using Canonical Correlation Analysis. Journal of Climate, 2011, 24, 1378-1395.	3.2	22
28	Long-Range Prediction of the Shipping Season in Hudson Bay: A Statistical Approach. Weather and Forecasting, 2007, 22, 1063-1075.	1.4	19
29	Analysis of consistency in first-year sea ice classification potential of C-band SAR polarimetric parameters. Canadian Journal of Remote Sensing, 2013, 39, 101-117.	2.4	18
30	Estimating melt onset over Arctic sea ice from time series multi-sensor Sentinel-1 and RADARSAT-2 backscatter. Remote Sensing of Environment, 2019, 229, 48-59.	11.0	18
31	Câ€band backscatter from a complexlyâ€layered snow cover on firstâ€year sea ice. Hydrological Processes, 2014, 28, 4614-4625.	2.6	17
32	Snow Property Controls on Modeled Ku-Band Altimeter Estimates of First-Year Sea Ice Thickness: Case Studies From the Canadian and Norwegian Arctic. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1082-1096.	4.9	17
33	Coincident high resolution optical-SAR image analysis for surface albedo estimation of first-year sea ice during summer melt. Remote Sensing of Environment, 2007, 111, 160-171.	11.0	16
34	Application of a three-component scattering model over snow-covered first-year sea ice using polarimetric C-band SAR data. International Journal of Remote Sensing, 2014, 35, 1786-1803.	2.9	14
35	Comparing matrix distance measures for unsupervised POLSAR data classification of sea ice based on agglomerative clustering. International Journal of Remote Sensing, 2013, 34, 1492-1505.	2.9	13
36	Geophysical and atmospheric controls on Ku-, X- and C-band backscatter evolution from a saline snow cover on first-year sea ice from late-winter to pre-early melt. Remote Sensing of Environment, 2017, 198, 425-441.	11.0	13

JOHN J YACKEL

#	Article	IF	CITATIONS
37	Snow Thickness Estimation on First-Year Sea Ice from Late Winter Spaceborne Scatterometer Backscatter Variance. Remote Sensing, 2019, 11, 417.	4.0	12
38	Snow thickness estimation on first-year sea ice using microwave and optical remote sensing with melt modelling. Remote Sensing of Environment, 2017, 199, 321-332.	11.0	11
39	Physical length scales of wind-blown snow redistribution and accumulation on relatively smooth Arctic first-year sea ice. Environmental Research Letters, 2019, 14, 104003.	5.2	11
40	Seasonal evolution of L-band SAR backscatter over landfast Arctic sea ice. Remote Sensing of Environment, 2020, 251, 112049.	11.0	11
41	Ku-, X- and C-Band Microwave Backscatter Indices from Saline Snow Covers on Arctic First-Year Sea Ice. Remote Sensing, 2017, 9, 757.	4.0	10
42	A spectral mixture analysis approach to quantify Arctic first-year sea ice melt pond fraction using QuickBird and MODIS reflectance data. Remote Sensing of Environment, 2018, 204, 704-716.	11.0	10
43	Multifrequency Microwave Backscatter From a Highly Saline Snow Cover on Smooth First-Year Sea Ice: First-Order Theoretical Modeling. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 2177-2190.	6.3	8
44	Predicting Melt Pond Fraction on Landfast Snow Covered First Year Sea Ice from Winter C-Band SAR Backscatter Utilizing Linear, Polarimetric and Texture Parameters. Remote Sensing, 2018, 10, 1603.	4.0	5
45	Diurnal Scale Controls on C-Band Microwave Backscatter From Snow-Covered First-Year Sea Ice During the Transition From Late Winter to Early Melt. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 3860-3874.	6.3	4
46	Snow Depth on Sea Ice and on Land in the Canadian Arctic from Long-Term Observations. Atmosphere - Ocean, 2023, 61, 217-233.	1.6	4
47	Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice. Cryosphere, 2021, 15, 1811-1822.	3.9	3
48	Marine Aerosol Records of Arctic Seaâ€ice and Polynya Variability From New Ellesmere and Devon Island Firn Cores, Nunavut, Canada. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017205.	2.6	3
49	Detection of Icebergs Using Full-Polarimetric RADARSAT-2 SAR Data in West Antarctica. Korean Journal of Remote Sensing, 2012, 28, 21-28.	0.4	3
50	On the link between SARâ€derived sea ice melt and development of the summer upper ocean mixed layer in the North Open Water Polynya. International Journal of Remote Sensing, 2007, 28, 3979-3994.	2.9	1
51	Multi-frequency polarimetric microwave observations of snow cover on first-year Arctic sea ice. , 2015, , .		0
52	Multi-frequency microwave backscatter indices from saline snow covers on smooth first-year sea ice. , 2017, , .		0
53	Comparison of Ascat Estimated Snow Thickness on First-Year Sea Ice in the Canadian Arctic with Modeled and Passive Microwave Data. , 2020, , .		0