Laure Bally-Cuif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/771217/publications.pdf

Version: 2024-02-01

46984 69214 8,072 77 47 77 citations h-index g-index papers 84 84 84 7748 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neural stem cell pools in the vertebrate adult brain: Homeostasis from cellâ€autonomous decisions or community rules?. BioEssays, 2021, 43, e2000228.	1.2	16
2	LocalZProjector and DeProj: a toolbox for local 2D projection and accurate morphometrics of large 3D microscopy images. BMC Biology, 2021, 19, 136.	1.7	29
3	Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell, 2021, 28, 1457-1472.e12.	5.2	29
4	Lineage hierarchies and stochasticity ensure the long-term maintenance of adult neural stem cells. Science Advances, 2020, 6, eaaz5424.	4.7	37
5	Neurogenesis in zebrafish. , 2020, , 643-697.		3
6	Conserved and Divergent Features of Adult Neurogenesis in Zebrafish. Frontiers in Cell and Developmental Biology, 2020, 8, 525.	1.8	30
7	Mosaic Heterochrony in Neural Progenitors Sustains Accelerated Brain Growth and Neurogenesis in the Juvenile Killifish N.Âfurzeri. Current Biology, 2020, 30, 736-745.e4.	1.8	15
8	Lensless microscopy platform for single cell and tissue visualization. Biomedical Optics Express, 2020, 11, 2806.	1.5	12
9	Pharmacological analysis of zebrafish lphn3.1 morphant larvae suggests that saturated dopaminergic signaling could underlie the ADHD-like locomotor hyperactivity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 181-189.	2.5	32
10	Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signaling cascade in the vertebrate adult brain. Development (Cambridge), 2018, 145, .	1.2	69
11	Zebrafish Models of Attention-Deficit/Hyperactivity Disorder (ADHD)., 2017,, 145-169.		1
12	Life-Long Neurogenic Activity of Individual Neural Stem Cells and Continuous Growth Establish an Outside-In Architecture in the Teleost Pallium. Current Biology, 2017, 27, 3288-3301.e3.	1.8	57
13	A comparative view of regenerative neurogenesis in vertebrates. Development (Cambridge), 2016, 143, 741-753.	1.2	199
14	Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs. Nucleic Acids Research, 2016, 44, 3070-3081.	6.5	38
15	Embryonic origin and lineage hierarchies of the neural progenitor subtypes building the zebrafish adult midbrain. Developmental Biology, 2016, 420, 120-135.	0.9	42
16	A Nuclear Role for miR-9 and Argonaute Proteins in Balancing Quiescent and Activated Neural Stem Cell States. Cell Reports, 2016, 17, 1383-1398.	2.9	57
17	Radial glia and neural progenitors in the adult zebrafish central nervous system. Glia, 2015, 63, 1406-1428.	2.5	129
18	Editorial for ââ,¬Å"Regulatory RNAs in the nervous systemââ,¬Â• Frontiers in Cellular Neuroscience, 2015, 9, 38.	1.8	1

#	Article	IF	Citations
19	MicroRNAs in Brain Development. , 2015, , 447-488.		3
20	Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome. Nature Communications, 2015, 6, 6904.	5.8	31
21	Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene. Human Genetics, 2015, 134, 1163-1182.	1.8	14
22	Large-scale live imaging of adult neural stem cells in their endogenous niche. Development (Cambridge), 2015, 142, 3592-600.	1.2	51
23	A Serotonin Circuit Acts as an Environmental Sensor to Mediate Midline Axon Crossing through EphrinB2. Journal of Neuroscience, 2015, 35, 14794-14808.	1.7	24
24	The Helix-Loop-Helix Protein Id1 Controls Stem Cell Proliferation During Regenerative Neurogenesis in the Adult Zebrafish Telencephalon. Stem Cells, 2015, 33, 892-903.	1.4	69
25	Emotions and motivated behavior converge on an amygdalaâ€ike structure in the zebrafish. European Journal of Neuroscience, 2014, 40, 3302-3315.	1.2	98
26	Spatial Regionalization and Heterochrony in the Formation of Adult Pallial Neural Stem Cells. Developmental Cell, 2014, 30, 123-136.	3.1	88
27	A Self-Organizing miR-132/Ctbp2 Circuit Regulates Bimodal Notch Signals and Glial Progenitor Fate Choice during Spinal Cord Maturation. Developmental Cell, 2014, 30, 423-436.	3.1	32
28	Crybb2 coding for \hat{l}^2B2 -crystallin affects sensorimotor gating and hippocampal function. Mammalian Genome, 2013, 24, 333-348.	1.0	20
29	Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development (Cambridge), 2013, 140, 3335-3347.	1.2	111
30	Development of hypothalamic serotoninergic neurons requires Fgf signalling via the ETS-domain transcription factor Etv5b. Development (Cambridge), 2013, 140, 372-384.	1.2	31
31	Towards a Comprehensive Catalog of Zebrafish Behavior 1.0 and Beyond. Zebrafish, 2013, 10, 70-86.	0.5	795
32	Inter-Individual and Inter-Strain Variations in Zebrafish Locomotor Ontogeny. PLoS ONE, 2013, 8, e70172.	1.1	54
33	miR-9: a versatile regulator of neurogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 220.	1.8	254
34	Time to recognize zebrafish â€~affective' behavior. Behaviour, 2012, 149, 1019-1036.	0.4	59
35	Homeodomain Protein Otp and Activity-Dependent Splicing Modulate Neuronal Adaptation to Stress. Neuron, 2012, 73, 279-291.	3.8	68
36	miR-9 Controls the Timing of Neurogenesis through the Direct Inhibition of Antagonistic Factors. Developmental Cell, 2012, 22, 1052-1064.	3.1	133

#	Article	IF	Citations
37	EuFishBioMed (COST Action BM0804): A European Network to Promote the Use of Small Fishes in Biomedical Research. Zebrafish, 2012, 9, 90-93.	0.5	7
38	Stab wound injury of the zebrafish telencephalon: A model for comparative analysis of reactive gliosis. Glia, 2012, 60, 343-357.	2.5	189
39	The Enhancer of split transcription factor Her8a is a novel dimerisation partner for Her3 that controls anterior hindbrain neurogenesis in zebrafish. BMC Developmental Biology, 2011, 11, 27.	2.1	11
40	Expression of $\langle i \rangle$ Hairy/enhancer of split $\langle i \rangle$ genes in neural progenitors and neurogenesis domains of the adult zebrafish brain. Journal of Comparative Neurology, 2011, 519, 1748-1769.	0.9	59
41	Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development (Cambridge), 2011, 138, 1459-1469.	1.2	170
42	Modulation of Fgfr1a Signaling in Zebrafish Reveals a Genetic Basis for the Aggression–Boldness Syndrome. Journal of Neuroscience, 2011, 31, 13796-13807.	1.7	130
43	Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development (Cambridge), 2011 , 138 , $397-408$.	1.2	53
44	Adult zebrafish as a model organism for behavioural genetics. BMC Neuroscience, 2010, 11, 90.	0.8	283
45	Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia, 2010, 58, 870-888.	2.5	233
46	Photoactivation of the CreER ^{T2} Recombinase for Conditional Site-Specific Recombination with High Spatiotemporal Resolution. Zebrafish, 2010, 7, 199-204.	0.5	61
47	Notch Activity Levels Control the Balance between Quiescence and Recruitment of Adult Neural Stem Cells. Journal of Neuroscience, 2010, 30, 7961-7974.	1.7	247
48	Organization and physiology of the zebrafish nervous system. Fish Physiology, 2010, 29, 25-80.	0.2	12
49	MicroRNAs in brain development and physiology. Current Opinion in Neurobiology, 2009, 19, 461-470.	2.0	136
50	Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, ⟨i⟩Danio rerio⟨/i⟩, using transgenics to visualize rapheâ€specific ⟨i⟩pet1⟨/i⟩ expression. Journal of Comparative Neurology, 2009, 512, 158-182.	0.9	134
51	Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biology, 2009, 10, R81.	13.9	71
52	Fgf signaling in the zebrafish adult brain: Association of Fgf activity with ventricular zones but not cell proliferation. Journal of Comparative Neurology, 2008, 510, 422-439.	0.9	41
53	Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (<i>slc6a4a/b</i>) gene expression in the zebrafish brain. Journal of Comparative Neurology, 2008, 511, 521-542.	0.9	145
54	MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nature Neuroscience, 2008, 11, 641-648.	7.1	288

#	Article	IF	CITATIONS
55	NR4A2 controls the differentiation of selective dopaminergic nuclei in the zebrafish brain. Molecular and Cellular Neurosciences, 2008, 39, 592-604.	1.0	64
56	Identification of neural progenitor pools by E(Spl) factors in the embryonic and adult brain. Brain Research Bulletin, 2008, 75, 266-273.	1.4	42
57	Gsk3 \hat{I}^2 /PKA and Gli1 regulate the maintenance of neural progenitors at the midbrain-hindbrain boundary in concert with E(Spl) factor activity. Development (Cambridge), 2008, 135, 3137-3148.	1.2	11
58	Adult neurogenesis in nonâ€mammalian vertebrates. BioEssays, 2007, 29, 745-757.	1.2	192
59	The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system. Developmental Dynamics, 2007, 236, 1072-1084.	0.8	85
60	Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Developmental Biology, 2006, 289, 127-140.	0.9	89
61	Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Developmental Biology, 2006, 295, 278-293.	0.9	387
62	The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods, 2006, 39, 262-274.	1.9	188
63	Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. Journal of Neurobiology, 2006, 66, 463-475.	3.7	93
64	her5 expression reveals a pool of neural stem cells in the adult zebrafish midbrain. Development (Cambridge), 2006, 133, 4293-4303.	1.2	85
65	Requirements for endoderm and BMP signaling in sensory neurogenesis in zebrafish. Development (Cambridge), 2005, 132, 3731-3742.	1.2	82
66	Inhibition of neurogenesis at the zebrafish midbrain-hindbrain boundary by the combined and dose-dependent activity of a new hairy/E(spl)gene pair. Development (Cambridge), 2005, 132, 75-88.	1.2	43
67	Her5 acts as a prepattern factor that blocks neurogenin1 and coe2 expression upstream of Notch to inhibit neurogenesis at the midbrain-hindbrain boundary. Development (Cambridge), 2004, 131, 1993-2006.	1.2	64
68	Neurogenesis. Methods in Cell Biology, 2004, , 163-206.	0.5	12
69	Neurogenesis. Methods in Cell Biology, 2004, 76, 163-206.	0.5	4
70	Induction and patterning of neuronal development, and its connection to cell cycle control. Current Opinion in Neurobiology, 2003, 13, 16-25.	2.0	100
71	bHLH transcription factor Her5 links patterning to regional inhibition of neurogenesis at the midbrain-hindbrain boundary. Development (Cambridge), 2003, 130, 1591-1604.	1.2	75
72	Tracing of her5 progeny in zebrafish transgenics reveals the dynamics of midbrain-hindbrain neurogenesis and maintenance. Development (Cambridge), 2003, 130, 4307-4323.	1.2	70

#	Article	IF	CITATIONS
73	Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Mechanisms of Development, 2002, 119, S215-S220.	1.7	72
74	A γâ€secretase inhibitor blocks Notch signalingin vivoand causes a severe neurogenic phenotype in zebrafish. EMBO Reports, 2002, 3, 688-694.	2.0	459
75	<i>parachute</i> /i>n-cadherinis required for morphogenesis and maintained integrity of the zebrafish neural tube. Development (Cambridge), 2002, 129, 3281-3294.	1.2	205
76	Neural plate patterning: Upstream and downstream of the isthmic organizer. Nature Reviews Neuroscience, 2001, 2, 99-108.	4.9	515
77	Molecular cloning of Zcoe2, the zebrafish homolog of Xenopus Xcoe2 and mouse EBF-2, and its expression during primary neurogenesis. Mechanisms of Development, 1998, 77, 85-90.	1.7	74