
Shakti Singh Chauhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7711505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 2007, 38, 227-233.	7.6	353
2	Variations in acoustic velocity and density with age, and their interrelationships in radiata pine. Forest Ecology and Management, 2006, 229, 388-394.	3.2	94
3	Pontamine fast scarlet 4B: a new fluorescent dye for visualising cell wall organisation in radiata pine tracheids. Wood Science and Technology, 2013, 47, 59-75.	3.2	28
4	Damping behavior of wood filled polypropylene composites. Journal of Applied Polymer Science, 2009, 114, 2421-2426.	2.6	26
5	Genetic control of very early compression and opposite wood in Pinus radiata and its implications for selection. Tree Genetics and Genomes, 2011, 7, 563-571.	1.6	26
6	Differences in acoustic velocity by resonance and transit-time methods in an anisotropic laminated wood medium. Holzforschung, 2005, 59, 428-434.	1.9	24
7	Methods for the very early selection of Pinus radiata D. Don. for solid wood products. Annals of Forest Science, 2013, 70, 439-449.	2.0	24
8	Effect of carbonization temperature on properties of natural fiber and charcoal filled hybrid polymer composite. Composites Part B: Engineering, 2021, 217, 108846.	12.0	23
9	Characterization of mechanically perturbed young stems: can it be used for wood quality screening?. Annals of Forest Science, 2011, 68, 407-414.	2.0	22
10	Differences in dynamic modulus of elasticity determined by three vibration methods and their relationship with static modulus of elasticity. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	20
11	Destructive and non-destructive evaluation of seven hardwoods and analysis of data correlation. Holzforschung, 2014, 68, 951-956.	1.9	18
12	Mechanical properties of bio-fibers-reinforced high-density polyethylene composites: effect of coupling agents and bio-fillers. Journal of Reinforced Plastics and Composites, 2013, 32, 1722-1732.	3.1	17
13	Wood quality assessment of Pinus radiata (radiata pine) saplings by dynamic mechanical analysis. Wood Science and Technology, 2015, 49, 1239-1250.	3.2	15
14	The effectiveness of m-TMI-grafted-PP as a coupling agent for wood polymer composites. Journal of Composite Materials, 2016, 50, 3515-3524.	2.4	15
15	Measurement of surface growth stress in Eucalyptus nitens Maiden by splitting a log along its axis. Holzforschung, 2010, 64, .	1.9	14
16	Mechanical and thermal properties of wood fibers reinforced poly(lactic acid)/thermoplasticized starch composites. Journal of Applied Polymer Science, 2018, 135, 46118.	2.6	14
17	Wood quality in artificially inclined 1-year-old trees of <i>Eucalyptus regnans</i> — differences in tension wood and opposite wood properties. Canadian Journal of Forest Research, 2011, 41, 930-937.	1.7	12
18	Assessment of variability in morphological and wood quality traits in Melia dubia Cav. for selection of superior trees. Journal of the Indian Academy of Wood Science, 2014, 11, 25-32.	0.9	12

Shakti Singh Chauhan

#	Article	IF	CITATIONS
19	Segregation of Eucalyptus tereticornis Sm. clones for properties relevant to solid wood products. Annals of Forest Science, 2011, 68, 511.	2.0	11
20	Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends. Polymers and Polymer Composites, 2021, 29, S400-S410.	1.9	10
21	Evaluation of dynamic elastic properties of wood-filled polypropylene composites. Journal of Applied Polymer Science, 2006, 102, 1706-1711.	2.6	9
22	Wood quality: multifaceted opportunities. , 2006, , 159-202.		9
23	Micromechanical modeling of bamboo short fiber reinforced polypropylene composites. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2021, 4, 25-40.	2.1	8
24	Mechanical characterization, modelling and application design of bamboo-polypropylene composites. International Journal of Plastics Technology, 2018, 22, 85-103.	3.1	7
25	Moisture adsorption behaviour of decayed rubber wood. Journal of the Institute of Wood Science, 2009, 19, 1-6.	0.0	6
26	Effect of concentration of coupling agent on mechanical properties of coir–polypropylene composite. Journal of the Indian Academy of Wood Science, 2013, 10, 62-67.	0.9	6
27	Ranking very young Pinus radiata families for acoustic stiffness and validation by microfibril angle. Annals of Forest Science, 2016, 73, 393-400.	2.0	6
28	Wood quality: in context. , 2006, , 121-158.		6
29	Effect of repeated cycles of wetting and drying on mechanical properties of wood–polypropylene composites. Journal of the Indian Academy of Wood Science, 2020, 17, 114-122.	0.9	5
30	Development of bamboo polymer composites with improved impact resistance. Polymers and Polymer Composites, 0, , 096739112110093.	1.9	5
31	The effect of saw kerf width on the value of the axial growth stress measured by slitting a log along its axis. Wood Material Science and Engineering, 2016, 11, 1-12.	2.3	4
32	Cellulose nanofiber networked bamboo particleâ€based biocomposites. Polymer Composites, 2022, 43, 977-986.	4.6	4
33	Moisture adsorption and absorption behaviour of bio-fiber filled thermoplastic composites. Journal of the Indian Academy of Wood Science, 2015, 12, 104-109.	0.9	3
34	Non-destructive estimation of modulus of elasticity of wood polymer composite. Journal of the Indian Academy of Wood Science, 2017, 14, 18-23.	0.9	3
35	A comparative study of dynamic and static modulus of elasticity of natural fiber reinforced HDPE composites. Journal of the Indian Academy of Wood Science, 2018, 15, 80-86.	0.9	3
36	Longitudinal growth strains in five clones of Eucalyptus tereticornis Sm Journal of Forestry Research, 2013, 24, 339-343.	3.6	2

Shakti Singh Chauhan

#	Article	IF	CITATIONS
37	Effect of grafting yield and molecular weight of mâ€ŢMIâ€graftedâ€PP on the mechanical properties of wood fiber filled polypropylene composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
38	Quality Assessment of Artocarpus heterophyllus Log Using Nondestructive Evaluation Techniques. Journal of Nondestructive Evaluation, 2021, 40, 1.	2.4	1
39	Liquefaction efficiency ofHevea Brasiliensiswood in phenol with hydrochloric acid as a catalyst. Journal of the Institute of Wood Science, 2009, 19, 22-26.	0.0	Ο
40	Microwave drying of planks of Grevillea robusta A. Cunn. ex R. Journal of the Indian Academy of Wood Science, 2011, 8, 84-88.	0.9	0
41	The effect of galactan content on the mechano-sorptive strain in loblolly pine. Holzforschung, 2011, 65, .	1.9	Ο
42	Phenotypic assessment of wood density and stiffness in Melia dubia plantations from three locations using non-destructive tools. Journal of the Indian Academy of Wood Science, 2019, 16, 87-93.	0.9	0