John F Culling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7711435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acoustic analysis of the effect of personal protective equipment on speech understanding: lessons for clinical environments. International Journal of Audiology, 2023, 62, 682-687.	1.7	1
2	Dataset of British English speech recordings for psychoacoustics and speech processing research: The clarity speech corpus. Data in Brief, 2022, 41, 107951.	1.0	7
3	Binaural Unmasking and Spatial Release from Masking. Springer Handbook of Auditory Research, 2021, , 209-241.	0.7	11
4	Unilateral crosstalk cancellation in normal hearing participants using bilateral bone transducers. Journal of the Acoustical Society of America, 2020, 148, 63-72.	1.1	6
5	The effects of ceiling height and absorber placement on speech intelligibility in simulated restaurants. Acoustical Science and Technology, 2020, 41, 223-228.	0.5	3
6	Psychoacoustic measurement of phase and level for cross-talk cancellation using bilateral bone transducers: Comparison of methods. Journal of the Acoustical Society of America, 2019, 146, 3295-3301.	1.1	8
7	The Factor Analysis of Speech: Limitations and Opportunities for Cochlear Implants. Acta Acustica United With Acustica, 2018, 104, 835-838.	0.8	4
8	Turn an Ear to Hear: How Hearing-Impaired Listeners Can Exploit Head Orientation to Enhance Their Speech Intelligibility in Noisy Social Settings. Trends in Hearing, 2018, 22, 233121651880270.	1.3	13
9	Scanning laser Doppler vibrometry of the cranium when stimulated by a B71 bone transducer. Applied Acoustics, 2018, 142, 53-58.	3.3	4
10	Energetic Masking and Masking Release. Springer Handbook of Auditory Research, 2017, , 41-73.	0.7	25
11	Reverberation limits the release from informational masking obtained in the harmonic and binaural domains. Attention, Perception, and Psychophysics, 2017, 79, 363-379.	1.3	8
12	Measurements of inter-cochlear level and phase differences of bone-conducted sound. Journal of the Acoustical Society of America, 2017, 141, 3421-3429.	1.1	10
13	Cochlear implant simulator with independent representation of the full spiral ganglion. Journal of the Acoustical Society of America, 2017, 142, EL484-EL489.	1.1	24
14	Auditory compensation for head rotation is incomplete Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 371-380.	0.9	14
15	Speech intelligibility in virtual restaurants. Journal of the Acoustical Society of America, 2016, 140, 2418-2426.	1.1	15
16	The benefit of head orientation to speech intelligibility in noise. Journal of the Acoustical Society of America, 2016, 139, 703-712.	1.1	55
17	Head orientation benefit to speech intelligibility in noise for cochlear implant users and in realistic listening conditions. Journal of the Acoustical Society of America, 2016, 140, 4061-4072.	1.1	19
18	Speech Intelligibility for Target and Masker with Different Spectra. Advances in Experimental Medicine and Biology, 2016, 894, 257-266.	1.6	5

John F Culling

#	Article	IF	CITATIONS
19	Binaural Loudness Constancy. Advances in Experimental Medicine and Biology, 2016, 894, 65-72.	1.6	2
20	Speech intelligibility prediction in reverberation: Towards an integrated model of speech transmission, spatial unmasking, and binaural de-reverberation. Journal of the Acoustical Society of America, 2015, 137, 3335-3345.	1.1	25
21	A model that predicts the binaural advantage to speech intelligibility from the mixed target and interferer signals. Journal of the Acoustical Society of America, 2014, 135, 796-807.	1.1	21
22	Speech recognition against harmonic and inharmonic complexes: Spectral dips and periodicity. Journal of the Acoustical Society of America, 2014, 135, 2873-2884.	1.1	21
23	Roles of the target and masker fundamental frequencies in voice segregation. Journal of the Acoustical Society of America, 2014, 136, 1225-1236.	1.1	20
24	Phase effects in masking by harmonic complexes: Detection of bands of speech-shaped noise. Journal of the Acoustical Society of America, 2014, 136, 2726-2736.	1.1	3
25	Does the signal-to-noise ratio of an interlocutor influence a speaker's vocal intensity?. Computer Speech and Language, 2014, 28, 572-579.	4.3	1
26	Energetic and Informational Masking in a Simulated Restaurant Environment. Advances in Experimental Medicine and Biology, 2013, 787, 511-518.	1.6	5
27	Phase effects in masking by harmonic complexes: Speech recognition. Hearing Research, 2013, 306, 54-62.	2.0	6
28	Voice segregation by difference in fundamental frequency: Effect of masker type. Journal of the Acoustical Society of America, 2013, 134, EL465-EL470.	1.1	11
29	Speech intelligibility among modulated and spatially distributed noise sources. Journal of the Acoustical Society of America, 2013, 133, 2254-2261.	1.1	27
30	Parental Speech at 6ÂMonths Predicts Joint Attention at 12ÂMonths. Infancy, 2013, 18, E1.	1.6	17
31	Binaural prediction of speech intelligibility in reverberant rooms with multiple noise sources. Journal of the Acoustical Society of America, 2012, 131, 218-231.	1.1	51
32	The Benefit of Bilateral Versus Unilateral Cochlear Implantation to Speech Intelligibility in Noise. Ear and Hearing, 2012, 33, 673-682.	2.1	51
33	Revision and validation of a binaural model for speech intelligibility in noise. Hearing Research, 2011, 275, 96-104.	2.0	66
34	Narrow noise band detection in a complex masker: Masking level difference due to harmonicity. Hearing Research, 2011, 282, 225-235.	2.0	11
35	Test-retest reliability and validity of Audioscan and Békésy compared with pure tone audiometry. Audiological Medicine, 2011, 9, 40-46.	0.4	13
36	Subcomponent cues in binaural unmasking. Journal of the Acoustical Society of America, 2011, 129, 3846-3855.	1.1	4

JOHN F CULLING

#	Article	IF	CITATIONS
37	Voice segregation by difference in fundamental frequency: Evidence for harmonic cancellation. Journal of the Acoustical Society of America, 2011, 130, 2855-2865.	1.1	29
38	Spatial hearing. , 2010, , .		3
39	Prediction of binaural speech intelligibility against noise in rooms. Journal of the Acoustical Society of America, 2010, 127, 387-399.	1.1	102
40	Trading of intensity and interaural coherence in dichotic pitch stimuli. Journal of the Acoustical Society of America, 2010, 128, 1908-1914.	1.1	2
41	Measurement of the binaural auditory filter using a detection task. Journal of the Acoustical Society of America, 2010, 127, 3009-3017.	1.1	9
42	Subcomponent Cues in Binaural Unmasking. , 2010, , 247-255.		0
43	Interaural correlation and the binaural summation of loudness. Journal of the Acoustical Society of America, 2009, 125, 3865-3870.	1.1	32
44	The masking of interaural delays. Journal of the Acoustical Society of America, 2009, 125, 2162-2171.	1.1	3
45	Measurement of the binaural temporal window using a lateralisation task. Hearing Research, 2009, 248, 60-68.	2.0	12
46	Speech segregation in rooms: Monaural, binaural, and interacting effects of reverberation on target and interferer. Journal of the Acoustical Society of America, 2008, 123, 2237-2248.	1.1	54
47	The role of fundamental frequency contours in the perception of speech against interfering speech. Journal of the Acoustical Society of America, 2007, 122, 1765-1776.	1.1	99
48	Evidence specifically favoring the equalization-cancellation theory of binaural unmasking. Journal of the Acoustical Society of America, 2007, 122, 2803-2813.	1.1	33
49	Speech segregation in rooms: Effects of reverberation on both target and interferer. Journal of the Acoustical Society of America, 2007, 122, 1713-1723.	1.1	29
50	Interaural Correlation and Loudness. , 2007, , 359-368.		3
51	The spatial unmasking of speech: Evidence for better-ear listening. Journal of the Acoustical Society of America, 2006, 120, 1539-1545.	1.1	39
52	Speech perception from monaural and binaural information. Journal of the Acoustical Society of America, 2006, 119, 559-565.	1.1	10
53	Effects of differences in the accent and gender of competing voices on speech segregation. , 2005, , 306-312.		0
54	The spatial unmasking of speech: evidence for within-channel processing of interaural time delay. Journal of the Acoustical Society of America, 2005, 117, 3069-3078.	1.1	51

JOHN F CULLING

#	Article	IF	CITATIONS
55	The viability of speech-in-noise audiometric screening using domestic audio equipment. International Journal of Audiology, 2005, 44, 691-700.	1.7	23
56	The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. Journal of the Acoustical Society of America, 2004, 115, 833-843.	1.1	427
57	The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. Journal of the Acoustical Society of America, 2004, 116, 1057-1065.	1.1	154
58	Effects of reverberation on perceptual segregation of competing voices. Journal of the Acoustical Society of America, 2003, 114, 2871.	1.1	88
59	Interaural correlation sensitivity. Journal of the Acoustical Society of America, 2001, 110, 1020-1029.	1.1	78
60	Auditory motion segregation: A limited analogy with vision Journal of Experimental Psychology: Human Perception and Performance, 2000, 26, 1760-1769.	0.9	5
61	Dichotic pitches as illusions of binaural unmasking. III. The existence region of the Fourcin pitch. Journal of the Acoustical Society of America, 2000, 107, 2201-2208.	1.1	8
62	Binaural sluggishness in the perception of tone sequences and speech in noise. Journal of the Acoustical Society of America, 2000, 107, 517-527.	1.1	41
63	The existence region of Huggins' pitch. Hearing Research, 1999, 127, 143-148.	2.0	12
64	Dichotic pitches as illusions of binaural unmasking. I. Huggins' pitch and the "binaural edge pitch― Journal of the Acoustical Society of America, 1998, 103, 3509-3526.	1.1	55
65	Dichotic pitches as illusions of binaural unmasking. II. The Fourcin pitch and the dichotic repetition pitch. Journal of the Acoustical Society of America, 1998, 103, 3527-3539.	1.1	34
66	Lateralization of large interaural delays. Journal of the Acoustical Society of America, 1998, 104, 1574-1579.	1.1	64
67	Measurements of the binaural temporal window using a detection task. Journal of the Acoustical Society of America, 1998, 103, 3540-3553.	1.1	86
68	Changes in lateralization and loudness judgements during one week of unilateral ear plugging. Hearing Research, 1997, 113, 165-172.	2.0	28
69	Signal-processing software for teaching and research in psychoacoustics under UNIX and X-Windows. Behavior Research Methods, 1996, 28, 376-382.	1.3	15
70	The role of frequency modulation in the perceptual segregation of concurrent vowels. Journal of the Acoustical Society of America, 1995, 98, 837-846.	1.1	36
71	Perceptual separation of concurrent speech sounds: Absence of acrossâ€frequency grouping by common interaural delay. Journal of the Acoustical Society of America, 1995, 98, 785-797.	1.1	194
72	Perceptual and computational separation of simultaneous vowels: Cues arising from lowâ€frequency beating. Journal of the Acoustical Society of America, 1994, 95, 1559-1569.	1.1	102

JOHN F CULLING

#	Article	IF	CITATIONS
73	Effects of simulated reverberation on the use of binaural cues and fundamental-frequency differences for separating concurrent vowels. Speech Communication, 1994, 14, 71-95.	2.8	55
74	The role of timbre in the segregation of simultaneous voices with intersecting FO contours. Perception & Psychophysics, 1993, 54, 303-309.	2.3	32
75	Perceptual separation of simultaneous vowels: Within and acrossâ€formant grouping by F0. Journal of the Acoustical Society of America, 1993, 93, 3454-3467.	1.1	162
76	Speech perception seen through the ear. Speech Communication, 1990, 9, 469-475.	2.8	18