Stephen L Archer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7710654/publications.pdf

Version: 2024-02-01

		10389	7348
167	24,212	72	152
papers	citations	h-index	g-index
169	169	169	19798
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Mitochondria in human neutrophils mediate killing of Staphylococcus aureus. Redox Biology, 2022, 49, 102225.	9.0	30
2	The comprehensive transcriptome of human ductus arteriosus smooth muscle cells (hDASMC). Data in Brief, 2022, 40, 107736.	1.0	1
3	Inflammatory Glycoprotein 130 Signaling Links Changes in Microtubules and Junctophilin-2 to Altered Mitochondrial Metabolism and Right Ventricular Contractility. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008574.	3.9	14
4	Using health administrative data to identify patients with pulmonary hypertension: A single center, proof of concept validation study in Ontario, Canada. Pulmonary Circulation, 2022, 12, e12040.	1.7	1
5	Inhibiting pyruvate kinase muscle isoform 2 regresses group 2 pulmonary hypertension induced by supraâ€coronary aortic banding. Acta Physiologica, 2022, 234, e13764.	3.8	3
6	Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nature Cell Biology, 2022, 24, 168-180.	10.3	68
7	Macrophage–NLRP3 Activation Promotes Right Ventricle Failure in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 608-624.	5.6	37
8	Hemodynamic Characteristics and Outcomes of Pulmonary Hypertension in Patients Undergoing Tricuspid Valve Repair or Replacement. CJC Open, 2021, 3, 488-497.	1.5	6
9	Scientist on the Spot: Exploring the cause and cure for pulmonary arterial hypertension. Cardiovascular Research, 2021, 117, e82-e83.	3.8	0
10	Left Main Coronary Artery Compression in Pulmonary Arterial Hypertension: Percutaneous Treatment to Improve Symptoms. CJC Open, 2021, 3, 690-692.	1.5	0
11	Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Medicine, 2021, 13, 80.	8.2	43
12	Diagnosis and Treatment of Right Heart Failure in Pulmonary Vascular Diseases: A National Heart, Lung, and Blood Institute Workshop. Circulation: Heart Failure, 2021, 14, .	3.9	11
13	PINK1â€induced phosphorylation of mitofusin 2 at serine 442 causes its proteasomal degradation and promotes cell proliferation in lung cancer and pulmonary arterial hypertension. FASEB Journal, 2021, 35, e21771.	0.5	25
14	Carvedilol for Treatment of Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2021, 10, e021518.	3.7	1
15	Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer. Free Radical Biology and Medicine, 2021, 170, 150-178.	2.9	32
16	The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria. Genomics, 2021, 113, 3128-3140.	2.9	7
17	Anomalous Right Coronary Artery Arising from Distal Left Circumflex Artery. CJC Open, 2021, 4, 112-113.	1.5	O
18	Mitochondrial iron–sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biology, 2021, 47, 102164.	9.0	101

#	Article	IF	Citations
19	Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. American Journal of Physiology - Cell Physiology, 2020, 318, C1-C28.	4.6	26
20	Identification of novel dynaminâ€related protein 1 (Drp1) GTPase inhibitors: <i>Therapeutic potential of Drpitor1 and Drpitor1a in cancer and cardiac ischemiaâ€reperfusion injury</i> . FASEB Journal, 2020, 34, 1447-1464.	0.5	68
21	Suppression of Superoxide-Hydrogen Peroxide Production at Site IQ of Mitochondrial Complex I Attenuates Myocardial Stunning and Improves Postcardiac Arrest Outcomes. Critical Care Medicine, 2020, 48, e133-e140.	0.9	20
22	Endothelial <i>BMPR2</i> Loss Drives a Proliferative Response to BMP (Bone Morphogenetic Protein) 9 via Prolonged Canonical Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2605-2618.	2.4	29
23	Excess Protein O-GlcNAcylation Links Metabolic Derangements to Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2020, 21, 7278.	4.1	17
24	Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation, 2020, 142, 1464-1484.	1.6	96
25	Differentiating COVID-19 Pneumonia From Acute Respiratory Distress Syndrome and High Altitude Pulmonary Edema. Circulation, 2020, 142, 101-104.	1.6	136
26	Novel Mutations and Decreased Expression of the Epigenetic Regulator <i>TET2</i> in Pulmonary Arterial Hypertension. Circulation, 2020, 141, 1986-2000.	1.6	75
27	Epigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial Hypertension. Circulation Research, 2020, 126, 1723-1745.	4.5	83
28	Mitochondria in the Pulmonary Vasculature in Health and Disease: Oxygenâ€6ensing, Metabolism, and Dynamics. , 2020, 10, 713-765.		39
29	Providing care for the 99.9% during the COVID-19 pandemic: How ethics, equity, epidemiology, and cost per QALY inform healthcare policy. Healthcare Management Forum, 2020, 33, 239-242.	1.4	9
30	Evaluation of the Impact of an Echocardiographic Diagnosis of Pulmonary Hypertension on Patient Outcomes. CJC Open, 2020, 2, 328-336.	1.5	6
31	Hypochloremia Is a Noninvasive Predictor of Mortality in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2020, 9, e015221.	3.7	11
32	An epigenetic increase in mitochondrial fission by MiD49 and MiD51 regulates the cell cycle in cancer: <i>Diagnostic and therapeutic implications</i>	0.5	16
33	Supraâ€coronary aortic banding improves right ventricular function in experimental pulmonary arterial hypertension in rats by increasing systolic right coronary artery perfusion. Acta Physiologica, 2020, 229, e13483.	3.8	12
34	Biventricular Assessment of Cardiac Function and Pressure-Volume Loops by Closed-Chest Catheterization in Mice. Journal of Visualized Experiments, 2020, , .	0.3	4
35	Clinical Determinants and Prognostic Implications of Right Ventricular Dysfunction in Pulmonary Hypertension Caused by Chronic Lung Disease. Journal of the American Heart Association, 2019, 8, e011464.	3.7	44
36	Metabolic Syndrome Exacerbates Pulmonary Hypertension due to Left Heart Disease. Circulation Research, 2019, 125, 449-466.	4.5	73

#	Article	IF	Citations
37	Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circulation Research, 2019, 124, 1727-1746.	4.5	67
38	Pathophysiology, incidence, management, and consequences of cardiac arrhythmia in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Pulmonary Circulation, 2019, 9, 1-15.	1.7	24
39	Response by Dunham-Snary and Archer to Letter Regarding Article, "Ndufs2, a Core Subunit of Mitochondrial Complex I, is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction― Circulation Research, 2019, 125, e35-e36.	4.5	0
40	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine, the, 2019, 7, 227-238.	10.7	122
41	Repurposing Medications for Treatment of Pulmonary Arterial Hypertension: What's Old Is New Again. Journal of the American Heart Association, 2019, 8, e011343.	3.7	50
42	Survival in pulmonary hypertension due to chronic lung disease: Influence of low diffusion capacity of the lungs for carbon monoxide. Journal of Heart and Lung Transplantation, 2019, 38, 145-155.	0.6	40
43	Home Virtual Visits for Outpatient Follow-Up Stroke Care: Cross-Sectional Study. Journal of Medical Internet Research, 2019, 21, e13734.	4.3	52
44	Epigenetic Dysregulation of the Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increases Mitotic Mitochondrial Fission and Promotes Pulmonary Arterial Hypertension. Circulation, 2018, 138, 287-304.	1.6	115
45	Increasing Incidence and Prevalence of World Health Organization Groups 1 to 4 Pulmonary Hypertension. Circulation: Cardiovascular Quality and Outcomes, 2018, 11, e003973.	2.2	187
46	Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ: British Medical Journal, 2018, 360, j5492.	2.3	553
47	Standards and Methodological Rigor in Pulmonary Arterial Hypertension Preclinical and Translational Research. Circulation Research, 2018, 122, 1021-1032.	4.5	111
48	Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. Journal of Heart and Lung Transplantation, 2018, 37, 376-384.	0.6	68
49	Models and Molecular Mechanisms of World Health Organization Group 2 to 4 Pulmonary Hypertension. Hypertension, 2018, 71, 34-55.	2.7	18
50	Left Atrial Stenosis Induced Pulmonary Venous Arterialization and Group 2 Pulmonary Hypertension in Rat. Journal of Visualized Experiments, 2018, , .	0.3	5
51	Transcriptomic Signature of Right Ventricular Failure in Experimental Pulmonary Arterial Hypertension: Deep Sequencing Demonstrates Mitochondrial, Fibrotic, Inflammatory and Angiogenic Abnormalities. International Journal of Molecular Sciences, 2018, 19, 2730.	4.1	43
52	A pro-con debate: current controversies in PAH pathogenesis at the American Thoracic Society International Conference in 2017. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L502-L516.	2.9	13
53	Increased Drp1-Mediated Mitochondrial Fission Promotes Proliferation and Collagen Production by Right Ventricular Fibroblasts in Experimental Pulmonary Arterial Hypertension. Frontiers in Physiology, 2018, 9, 828.	2.8	59
54	A Step Closer to Understanding How Riociguat Results in Remodelling of the Right Ventricle in Chronic Thromboembolic Pulmonary Hypertension. Canadian Journal of Cardiology, 2018, 34, 1098-1101.	1.7	0

#	Article	IF	CITATIONS
55	Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement. American Journal of Respiratory and Critical Care Medicine, 2018, 198, e15-e43.	5.6	220
56	Biventricular Increases in Mitochondrial Fission Mediator (MiD51) and Proglycolytic Pyruvate Kinase (PKM2) Isoform in Experimental Group 2 Pulmonary Hypertension-Novel Mitochondrial Abnormalities. Frontiers in Cardiovascular Medicine, 2018, 5, 195.	2.4	22
57	Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. Journal of Molecular Medicine, 2017, 95, 381-393.	3.9	90
58	Colchicine Depolymerizes Microtubules, Increases Junctophilinâ€2, and Improves Right Ventricular Function in Experimental Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2017, 6, .	3.7	49
59	Metabolic heterogeneity of idiopathic pulmonary fibrosis: a metabolomic study. BMJ Open Respiratory Research, 2017, 4, e000183.	3.0	148
60	Resistance over compliance describes right ventricular afterload better than resistanceâ€compliance time: a friendly amendment. Pulmonary Circulation, 2017, 7, 275-275.	1.7	O
61	MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 515-529.	5.6	134
62	Hypoxic Pulmonary Vasoconstriction. Chest, 2017, 151, 181-192.	0.8	292
63	Pyruvate Kinase and Warburg Metabolism in Pulmonary Arterial Hypertension. Circulation, 2017, 136, 2486-2490.	1.6	55
64	Pulmonary Pulse Wave Transit Time is Associated with Right Ventricular–Pulmonary Artery Coupling in Pulmonary Arterial Hypertension. Pulmonary Circulation, 2016, 6, 576-585.	1.7	30
65	Executive Summary of the American Heart Association and American Thoracic Society Joint Guidelines for Pediatric Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 898-906.	5.6	36
66	The role of Drp1 adaptor proteins MiD49 and MiD51Âin mitochondrial fission: implications for human disease. Clinical Science, 2016, 130, 1861-1874.	4.3	78
67	Trends and Outcomes of Pulmonary Arterial Hypertension–Related Hospitalizations in the United States. JAMA Cardiology, 2016, 1, 1021.	6.1	69
68	Pulmonary hypertension begets pulmonary hypertension: mutually reinforcing roles for haemodynamics, inflammation, and cancer-like phenotypes. Cardiovascular Research, 2016, 111, 1-4.	3.8	8
69	Acquired Mitochondrial Abnormalities, Including Epigenetic Inhibition of Superoxide Dismutase 2, in Pulmonary Hypertension and Cancer: Therapeutic Implications. Advances in Experimental Medicine and Biology, 2016, 903, 29-53.	1.6	33
70	Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 464-475.	5.6	69
71	A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Pflugers Archiv European Journal of Physiology, 2016, 468, 43-58.	2.8	30
72	Pediatric Pulmonary Hypertension. Circulation, 2015, 132, 2037-2099.	1.6	879

#	Article	IF	CITATIONS
73	Gone fission: an asymptomatic <i>STAT2</i> mutation elongates mitochondria and causes human disease following viral infection. Brain, 2015, 138, 2802-2806.	7.6	7
74	Mitochondrial dynamics in pulmonary arterial hypertension. Journal of Molecular Medicine, 2015, 93, 229-242.	3.9	121
75	Peripheral Blood Signature of Vasodilator-Responsive Pulmonary Arterial Hypertension. Circulation, 2015, 131, 401-409.	1.6	72
76	Mitochondrial dynamics in cardiovascular disease: fission and fusion foretell form and function. Journal of Molecular Medicine, 2015, 93, 225-228.	3.9	20
77	Inhibition of the Mitochondrial Fission Protein Dynamin-Related Protein 1 Improves Survival in a Murine Cardiac Arrest Model. Critical Care Medicine, 2015, 43, e38-e47.	0.9	81
78	Emerging Concepts in the Molecular Basis of Pulmonary Arterial Hypertension. Circulation, 2015, 131, 1691-1702.	1.6	160
79	Right Ventricular Adaptation and Failure in Pulmonary Arterial Hypertension. Canadian Journal of Cardiology, 2015, 31, 391-406.	1.7	140
80	Mitochondrial Fission and Fusion in Human Diseases. New England Journal of Medicine, 2014, 370, 1073-1074.	27.0	43
81	SIRT3 Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress. Molecular and Cellular Biology, 2014, 34, 807-819.	2.3	331
82	Activation of the EGFR/p38/JNK pathway by mitochondrial-derived hydrogen peroxide contributes to oxygen-induced contraction of ductus arteriosus. Journal of Molecular Medicine, 2014, 92, 995-1007.	3.9	24
83	Dynaminâ€related protein 1 (Drp1)â€mediated diastolic dysfunction in myocardial ischemiaâ€reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB Journal, 2014, 28, 316-326.	0.5	284
84	The Right Ventricle in Pulmonary Arterial Hypertension. Circulation Research, 2014, 115, 176-188.	4.5	361
85	Riociguat for Pulmonary Hypertension â€" A Glass Half Full. New England Journal of Medicine, 2013, 369, 386-388.	27.0	51
86	QTc prolongation is associated with impaired right ventricular function and predicts mortality in pulmonary hypertension. International Journal of Cardiology, 2013, 167, 669-676.	1.7	77
87	Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension. Journal of the American College of Cardiology, 2013, 62, D4-D12.	2.8	465
88	Mitochondrial Dynamics â€" Mitochondrial Fission and Fusion in Human Diseases. New England Journal of Medicine, 2013, 369, 2236-2251.	27.0	843
89	PGC1α-mediated Mitofusin-2 Deficiency in Female Rats and Humans with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 865-878.	5.6	177
90	FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate. Journal of Molecular Medicine, 2013, 91, 333-346.	3.9	125

#	Article	IF	CITATIONS
91	Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. Journal of Molecular Medicine, 2013, 91, 1185-1197.	3.9	143
92	Metabolism and Bioenergetics in the Right Ventricle and Pulmonary Vasculature in Pulmonary Hypertension. Pulmonary Circulation, 2013, 3, 144-152.	1.7	147
93	Role of Dynamin-Related Protein 1 (Drp1)-Mediated Mitochondrial Fission in Oxygen Sensing and Constriction of the Ductus Arteriosus. Circulation Research, 2013, 112, 802-815.	4.5	88
94	Rodent Models of Group 1 Pulmonary Hypertension. Handbook of Experimental Pharmacology, 2013, 218, 105-149.	1.8	34
95	Rodent Models of Group 1 Pulmonary Hypertension. Handbook of Experimental Pharmacology, 2013, , 105-149.	1.8	37
96	GRK2-Mediated Inhibition of Adrenergic and Dopaminergic Signaling in Right Ventricular Hypertrophy. Circulation, 2012, 126, 2859-2869.	1.6	106
97	Lung ¹⁸ F-Fluorodeoxyglucose Positron Emission Tomography for Diagnosis and Monitoring of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 670-679.	5.6	159
98	Dynamin-Related Protein 1–Mediated Mitochondrial Mitotic Fission Permits Hyperproliferation of Vascular Smooth Muscle Cells and Offers a Novel Therapeutic Target in Pulmonary Hypertension. Circulation Research, 2012, 110, 1484-1497.	4.5	363
99	Evolving Epidemiology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 707-709.	5.6	49
100	Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 14.	3.3	187
101	The Right Ventricle. , 2012, , 537-553.		1
102	Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB Journal, 2012, 26, 2175-2186.	0.5	458
103	Persistence of complex vascular lesions despite prolonged prostacyclin therapy of pulmonary arterial hypertension. Histopathology, 2012, 61, 597-609.	2.9	34
104	Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle's cycle. Journal of Molecular Medicine, 2012, 90, 31-43.	3.9	175
105	Epigenetic Mechanisms of Pulmonary Hypertension. Pulmonary Circulation, 2011, 1, 347-356.	1.7	85
106	A Central Role for CD68(+) Macrophages in Hepatopulmonary Syndrome. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1080-1091.	5.6	158
107	Long-term Effects of Epoprostenol on the Pulmonary Vasculature in Idiopathic Pulmonary Arterial Hypertension. Chest, 2010, 138, 1234-1239.	0.8	109
108	The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. Journal of Molecular Medicine, 2010, 88, 47-60.	3.9	271

#	Article	IF	CITATIONS
109	Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. Journal of Molecular Medicine, 2010, 88, 1011-1020.	3.9	137
110	The role of redox changes in oxygen sensing. Respiratory Physiology and Neurobiology, 2010, 174, 182-191.	1.6	48
111	Epigenetic Attenuation of Mitochondrial Superoxide Dismutase 2 in Pulmonary Arterial Hypertension. Circulation, 2010, 121, 2661-2671.	1.6	361
112	Basic Science of Pulmonary Arterial Hypertension for Clinicians. Circulation, 2010, 121, 2045-2066.	1.6	440
113	Validation of high-resolution echocardiography and magnetic resonance imaging vs. high-fidelity catheterization in experimental pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L401-L412.	2.9	142
114	A Proposed Mitochondrial–Metabolic Mechanism for Initiation and Maintenance of Pulmonary Arterial Hypertension in Fawn-Hooded Rats: The Warburg Model of Pulmonary Arterial Hypertension. Advances in Experimental Medicine and Biology, 2010, 661, 171-185.	1.6	78
115	Novel role of Preâ€Bâ€Cell Colony Enhancing Factor (PBEF) in pulmonary arterial hypertension (PAH). FASEB Journal, 2010, 24, 1023.6.	0.5	0
116	ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension. Circulation, 2009, 119, 2250-2294.	1.6	992
117	Phosphodiesterase Type 5 Inhibitors for Pulmonary Arterial Hypertension. New England Journal of Medicine, 2009, 361, 1864-1871.	27.0	192
118	ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension. Journal of the American College of Cardiology, 2009, 53, 1573-1619.	2.8	1,797
119	Cellular and Molecular Basis of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S20-S31.	2.8	714
120	A Central Role for Oxygen-Sensitive K+ Channels and Mitochondria in the Specialized Oxygen-Sensing System. Novartis Foundation Symposium, 2008, , 157-175.	1.1	24
121	Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O ₂ -sensing pathway at the intersection of pulmonary hypertension and cancer. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H570-H578.	3.2	319
122	Blunted Hypoxic Pulmonary Vasoconstriction in Experimental Neonatal Chronic Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 399-406.	5.6	16
123	Developmental Absence of the O2 Sensitivity of L-Type Calcium Channels in Preterm Ductus Arteriosus Smooth Muscle Cells Impairs O2 Constriction Contributing to Patent Ductus Arteriosus. Pediatric Research, 2008, 63, 176-181.	2.3	49
124	Comparison of CT contrast blood pool agents for in-vivo 3D angiography using MicroCT., 2008, , .		1
125	The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11418-11423.	7.1	332
126	Oxygen Activates the Rho/Rho-Kinase Pathway and Induces RhoB and ROCK-1 Expression in Human and Rabbit Ductus Arteriosus by Increasing Mitochondria-Derived Reactive Oxygen Species. Circulation, 2007, 115, 1777-1788.	1.6	135

#	Article	IF	Citations
127	Overexpression of human bone morphogenetic protein receptor 2 does not ameliorate monocrotaline pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L872-L878.	2.9	72
128	The making of a physician-scientistthe process has a pattern: lessons from the lives of Nobel laureates in medicine and physiology. European Heart Journal, 2007, 28, 510-514.	2.2	31
129	Statin therapy, alone or with rapamycin, does not reverse monocrotaline pulmonary arterial hypertension: the rapamcyin-atorvastatin-simvastatin study. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L933-L940.	2.9	71
130	Phosphodiesterase Type 5 Is Highly Expressed in the Hypertrophied Human Right Ventricle, and Acute Inhibition of Phosphodiesterase Type 5 Improves Contractility. Circulation, 2007, 116, 238-248.	1.6	486
131	A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell, 2007, 11, 37-51.	16.8	1,374
132	An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Current Opinion in Anaesthesiology, 2006, 19, 34-43.	2.0	59
133	COUNTERPOINT: HYPOXIC PULMONARY VASOCONSTRICTION IS NOT MEDIATED BY INCREASED PRODUCTION OF REACTIVE OXYGEN SPECIES. Journal of Applied Physiology, 2006, 101, 995-998.	2.5	44
134	The Role of K+Channels in Determining Pulmonary Vascular Tone, Oxygen Sensing, Cell Proliferation, and Apoptosis: Implications in Hypoxic Pulmonary Vasoconstriction and Pulmonary Arterial Hypertension. Microcirculation, 2006, 13, 615-632.	1.8	150
135	Untreated 37-Year-Old Homozygous Familial Hypercholesterolemic Smoker. Circulation, 2006, 113, e777.	1.6	2
136	An Abnormal Mitochondrial–Hypoxia Inducible Factor-1α–Kv Channel Pathway Disrupts Oxygen Sensing and Triggers Pulmonary Arterial Hypertension in Fawn Hooded Rats. Circulation, 2006, 113, 2630-2641.	1.6	530
137	A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system. Novartis Foundation Symposium, 2006, 272, 157-71; discussion 171-5, 214-7.	1.1	9
138	Hypoxic pulmonary vasoconstriction. Journal of Applied Physiology, 2005, 98, 390-403.	2.5	398
139	Acute Oxygen-Sensing Mechanisms. New England Journal of Medicine, 2005, 353, 2042-2055.	27.0	435
140	Aetiology and Management of Male Erectile Dysfunction and Female Sexual Dysfunction in Patients with Cardiovascular Disease. Drugs and Aging, 2005, 22, 823-844.	2.7	22
141	Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. Journal of Clinical Investigation, 2005, 115, 1479-1491.	8.2	323
142	Preferential Expression and Function of Voltage-Gated, O ₂ -Sensitive K ⁺ Channels in Resistance Pulmonary Arteries Explains Regional Heterogeneity in Hypoxic Pulmonary Vasoconstriction. Circulation Research, 2004, 95, 308-318.	4.5	177
143	Oxygen-Sensitive Kv Channel Gene Transfer Confers Oxygen Responsiveness to Preterm Rabbit and Remodeled Human Ductus Arteriosus. Circulation, 2004, 110, 1372-1379.	1.6	101
144	O2 sensing in the human ductus arteriosus: redox-sensitive K+ channels are regulated by mitochondria-derived hydrogen peroxide. Biological Chemistry, 2004, 385, 205-16.	2.5	57

#	Article	IF	Citations
145	Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2004, 37, 1119-36.	1.9	129
146	Endothelium-Derived Hyperpolarizing Factor in Human Internal Mammary Artery Is 11,12-Epoxyeicosatrienoic Acid and Causes Relaxation by Activating Smooth Muscle BK _{Ca} Channels. Circulation, 2003, 107, 769-776.	1.6	243
147	Long-Term Treatment With Oral Sildenafil Is Safe and Improves Functional Capacity and Hemodynamics in Patients With Pulmonary Arterial Hypertension. Circulation, 2003, 108, 2066-2069.	1.6	341
148	In Vivo Gene Transfer of the O ₂ -Sensitive Potassium Channel Kv1.5 Reduces Pulmonary Hypertension and Restores Hypoxic Pulmonary Vasoconstriction in Chronically Hypoxic Rats. Circulation, 2003, 107, 2037-2044.	1.6	252
149	Diversity in Mitochondrial Function Explains Differences in Vascular Oxygen Sensing. Circulation Research, 2002, 90, 1307-1315.	4.5	279
150	Dichloroacetate, a Metabolic Modulator, Prevents and Reverses Chronic Hypoxic Pulmonary Hypertension in Rats. Circulation, 2002, 105, 244-250.	1.6	340
151	O ₂ Sensing in the Human Ductus Arteriosus. Circulation Research, 2002, 91, 478-486.	4.5	154
152	The Mechanism(s) of Hypoxic Pulmonary Vasoconstriction: Potassium Channels, Redox O ₂ Sensors, and Controversies. Physiology, 2002, 17, 131-137.	3.1	62
153	Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2440-H2449.	3.2	91
154	Potassium channels and erectile dysfunction. Vascular Pharmacology, 2002, 38, 61-71.	2.1	69
155	Triple-bonded unsaturated fatty acids are redox active compounds. Lipids, 2001, 36, 431-433.	1.7	2
156	Redox control of oxygen sensing in the rabbit ductus arteriosus. Journal of Physiology, 2001, 533, 253-261.	2.9	64
157	Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltageâ€gated potassium channel Kv1.5. FASEB Journal, 2001, 15, 1801-1803.	0.5	138
158	Voltage-gated potassium channels in human ductus arteriosus. Lancet, The, 2000, 356, 134-137.	13.7	95
159	Effects of fluoxetine, phentermine, and venlafaxine on pulmonary arterial pressure and electrophysiology. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L213-L219.	2.9	13
160	Dexfenfluramine increases pulmonary artery smooth muscle intracellular Ca ²⁺ , independent of membrane potential. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L662-L666.	2.9	20
161	Aerosol delivery of diethylenetriamine/nitric oxide, a nitric oxide adduct, causes selective pulmonary vasodilation in perinatal lambs. Translational Research, 1999, 134, 419-425.	2.3	11
162	Measurement of Nitric Oxide and Nitric Oxide Synthase Activity., 1999, , 163-185.		4

STEPHEN L ARCHER

#	Article	IF	CITATION
163	Pulmonary Vasoconstriction, Oxygen Sensing, and the Role of Ion Channels. Chest, 1998, 114, 17S-22S.	0.8	31
164	A maturational shift in pulmonary K ⁺ channels, from Ca ²⁺ sensitive to voltage dependent. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L1019-L1025.	2.9	44
165	A Placebo-Controlled Trial of Prostacyclin in Acute Respiratory Failure in COPD. Chest, 1996, 109, 750-755.	0.8	77
166	Differential Distribution of Electrophysiologically Distinct Myocytes in Conduit and Resistance Arteries Determines Their Response to Nitric Oxide and Hypoxia. Circulation Research, 1996, 78, 431-442.	4.5	294
167	The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB Journal, 1995, 9, 183-189.	0.5	442