List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7710476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	13.7	169
2	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
3	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
4	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
5	Long-term analysis of clear-sky new particle formation events and nonevents in HyytiÃѬ́¤Atmospheric Chemistry and Physics, 2017, 17, 6227-6241.	1.9	84
6	Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing. Environmental Science & Technology, 2020, 54, 8547-8557.	4.6	78
7	Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. Faraday Discussions, 2021, 226, 334-347.	1.6	74
8	Molecular understanding of new-particle formation from <i>α</i> -pinene between â~'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	1.9	68
9	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Technology, 2020, 54, 7911-7921.	4.6	66
10	Observations of biogenic ion-induced cluster formation in the atmosphere. Science Advances, 2018, 4, eaar5218.	4.7	64
11	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
12	Overview of measurements and current instrumentation for 1–10Ânm aerosol particle number size distributions. Journal of Aerosol Science, 2020, 148, 105584.	1.8	58
13	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	1.9	58
14	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	1.9	56
15	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.	2.0	54
16	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	1.5	53
17	Variation of size-segregated particle number concentrations in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 1201-1216.	1.9	52
18	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50

#	Article	IF	CITATIONS
19	Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nature Protocols, 2020, 15, 1013-1040.	5.5	49
20	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	1.9	49
21	Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations. Atmospheric Chemistry and Physics, 2020, 20, 11747-11766.	1.9	42
22	Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 2021, 14, 4-9.	5.4	40
23	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	1.9	38
24	Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmospheric Chemistry and Physics, 2020, 20, 12721-12740.	1.9	36
25	Refined classification and characterization of atmospheric new-particle formation events using air ions. Atmospheric Chemistry and Physics, 2018, 18, 17883-17893.	1.9	35
26	Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.	1.9	34
27	Unprecedented Ambient Sulfur Trioxide (SO ₃) Detection: Possible Formation Mechanism and Atmospheric Implications. Environmental Science and Technology Letters, 2020, 7, 809-818.	3.9	34
28	The role of H ₂ SO ₄ -NH <sub&a anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 13231-13243.</sub&a 	amp;gt;3& 1.9	amp;lt;/sub&
29	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â~'50 °C and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365.	4.6	32
30	Vertical and horizontal distribution of regional new particle formation events in Madrid. Atmospheric Chemistry and Physics, 2018, 18, 16601-16618.	1.9	30
31	Size-resolved particle number emissions in Beijing determined from measured particle size distributions. Atmospheric Chemistry and Physics, 2020, 20, 11329-11348.	1.9	28
32	Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 2021, 768, 145282.	3.9	26
33	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	13.7	26
34	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	23
35	New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 14253-14271.	1.9	22
36	Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China. Science of the Total Environment, 2021, 753, 142207.	3.9	21

#	Article	IF	CITATIONS
37	Aerosol particle formation in the upper residual layer. Atmospheric Chemistry and Physics, 2021, 21, 7901-7915.	1.9	21
38	Vertical profiles of sub-3 nm particles over the boreal forest. Atmospheric Chemistry and Physics, 2019, 19, 4127-4138.	1.9	20
39	New particle formation, growth and apparent shrinkage at a rural background site in western Saudi Arabia. Atmospheric Chemistry and Physics, 2019, 19, 10537-10555.	1.9	19
40	Mutual Information Input Selector and Probabilistic Machine Learning Utilisation for Air Pollution Proxies. Applied Sciences (Switzerland), 2019, 9, 4475.	1.3	19
41	Towards understanding the characteristics of new particle formation in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2021, 21, 9223-9251.	1.9	19
42	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
43	Formation of nighttime sulfuric acid from the ozonolysis of alkenes in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 5499-5511.	1.9	17
44	The contribution of new particle formation and subsequent growth to haze formation. Environmental Science Atmospheres, 2022, 2, 352-361.	0.9	17
45	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Technology, 2022, 56, 770-778.	4.6	16
46	Characterization of Urban New Particle Formation in Amman—Jordan. Atmosphere, 2020, 11, 79.	1.0	14
47	Characterization, Fate, and Re-Suspension of Aerosol Particles (0.3–10 µm): The Effects of Occupancy and Carpet Use. Aerosol and Air Quality Research, 2015, 15, 2367-2377.	0.9	13
48	Atmospheric markers of African and Arabian dust in an urban eastern Mediterranean environment, Beirut, Lebanon. Journal of Aerosol Science, 2013, 66, 187-192.	1.8	12
49	Urban Aerosol Particle Size Characterization in Eastern Mediterranean Conditions. Atmosphere, 2019, 10, 710.	1.0	12
50	Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts. Atmospheric Chemistry and Physics, 2021, 21, 11437-11452.	1.9	12
51	Chemical composition of nanoparticles from <i>α</i> -pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	1.9	12
52	Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	12
53	Assessment of particle size magnifier inversion methods to obtain the particle size distribution from atmospheric measurements. Atmospheric Measurement Techniques, 2020, 13, 4885-4898.	1.2	11
54	The standard operating procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter. Journal of Aerosol Science, 2022, 159, 105896.	1.8	11

#	Article	IF	CITATIONS
55	New particle formation event detection with Mask R-CNN. Atmospheric Chemistry and Physics, 2022, 22, 1293-1309.	1.9	11
56	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
57	Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction. Atmospheric Chemistry and Physics, 2021, 21, 12173-12187.	1.9	10
58	Quiet New Particle Formation in the Atmosphere. Frontiers in Environmental Science, 0, 10, .	1.5	10
59	Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters. Journal of Aerosol Science, 2022, 159, 105878.	1.8	9
60	Aerosol formation and growth rates from chamber experiments using Kalman smoothing. Atmospheric Chemistry and Physics, 2021, 21, 12595-12611.	1.9	8
61	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	0.9	8
62	Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .	2.6	8
63	Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra. Atmospheric Chemistry and Physics, 2022, 22, 8097-8115.	1.9	8
64	A Predictive Model for Steady State Ozone Concentration at an Urban-Coastal Site. International Journal of Environmental Research and Public Health, 2019, 16, 258.	1.2	7
65	Measurement report: New particle formation characteristics at an urban and a mountain station in northern China. Atmospheric Chemistry and Physics, 2021, 21, 17885-17906.	1.9	7
66	Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula. Atmospheric Chemistry and Physics, 2022, 22, 8417-8437.	1.9	7
67	Observed coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in Beijing. Environmental Science Atmospheres, 2022, 2, 146-164.	0.9	6
68	Influence of Aerosol Chemical Composition on Condensation Sink Efficiency and New Particle Formation in Beijing. Environmental Science and Technology Letters, 2022, 9, 375-382.	3.9	6
69	An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom. Atmospheric Chemistry and Physics, 2022, 22, 6365-6391.	1.9	6
70	What controls the observed size-dependency of the growth rates of sub-10 nm atmospheric particles?. Environmental Science Atmospheres, 2022, 2, 449-468.	0.9	5
71	Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 2022, 22, 8547-8577.	1.9	5
72	Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of the Total Environment, 2022, 802, 149695.	3.9	4

#	Article	IF	CITATIONS
73	Activation of sub-3 nm organic particles in the particle size magnifier using humid and dry conditions. Journal of Aerosol Science, 2022, 161, 105945.	1.8	3
74	Highly crystalline LiCuXFe1â^XPO4nanoparticles synthesized by high temperature thermal decomposition: a morphological and electrical transport study. Journal Physics D: Applied Physics, 2016, 49, 335302.	1.3	2