Johannes Mülmenstädt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7710367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics, 2020, 58, e2019RG000660.	23.0	424
2	Charged-Particle Multiplicity near Midrapidity in CentralAu+AuCollisions atsNN=56and130GeV. Physical Review Letters, 2000, 85, 3100-3104.	7.8	240
3	Frequency of occurrence of rain from liquidâ€, mixedâ€, and iceâ€phase clouds derived from Aâ€Train satellite retrievals. Geophysical Research Letters, 2015, 42, 6502-6509.	4.0	227
4	Charged-Particle Pseudorapidity Density Distributions fromAu+AuCollisions atsNN=130GeV. Physical Review Letters, 2001, 87, 102303.	7.8	163
5	Understanding Rapid Adjustments to Diverse Forcing Agents. Geophysical Research Letters, 2018, 45, 12023-12031.	4.0	113
6	Energy Dependence of Particle Multiplicities in CentralAu+AuCollisions. Physical Review Letters, 2001, 88, 022302.	7.8	108
7	Constraining the aerosol influence on cloud liquid water path. Atmospheric Chemistry and Physics, 2019, 19, 5331-5347.	4.9	104
8	The PHOBOS detector at RHIC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 499, 603-623.	1.6	92
9	Eastern Pacific Emitted Aerosol Cloud Experiment. Bulletin of the American Meteorological Society, 2013, 94, 709-729.	3.3	89
10	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	4.9	87
11	Centrality dependence of charged particle multiplicity at midrapidity in Au+Au collisions atsNN=130â€,GeV. Physical Review C, 2002, 65, .	2.9	77
12	The Radiative Forcing of Aerosol–Cloud Interactions in Liquid Clouds: Wrestling and Embracing Uncertainty. Current Climate Change Reports, 2018, 4, 23-40.	8.6	70
13	Characterisation and airborne deployment of a new counterflow virtual impactor inlet. Atmospheric Measurement Techniques, 2012, 5, 1259-1269.	3.1	68
14	Efficacy of Climate Forcings in PDRMIP Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12824-12844.	3.3	55
15	An underestimated negative cloud feedback from cloud lifetime changes. Nature Climate Change, 2021, 11, 508-513.	18.8	51
16	Ratios of Charged Antiparticles-to-Particles near Mid-Rapidity inAu+AuCollisions atsNN=130GeV. Physical Review Letters, 2001, 87, 102301.	7.8	50
17	Constraining the Twomey effect from satellite observations: issues and perspectives. Atmospheric Chemistry and Physics, 2020, 20, 15079-15099.	4.9	49
18	Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.	4.9	44

#	Article	IF	CITATIONS
19	Surprising similarities in model and observational aerosol radiative forcing estimates. Atmospheric Chemistry and Physics, 2020, 20, 613-623.	4.9	39
20	Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering. Atmospheric Chemistry and Physics, 2015, 15, 9593-9610.	4.9	37
21	A Multimodel Study on Warm Precipitation Biases in Global Models Compared to Satellite Observations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,806.	3.3	34
22	Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Science Advances, 2020, 6, eaaz6433.	10.3	33
23	A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part 2: Nearâ€global retrievals and evaluation against Aâ€Train products. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 3063-3081.	2.7	31
24	Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere. Atmospheric Chemistry and Physics, 2013, 13, 9819-9835.	4.9	30
25	Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. Earth System Science Data, 2018, 10, 2279-2293.	9.9	28
26	Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum. Geophysical Research Letters, 2017, 44, 1001-1007.	4.0	27
27	Comment on "Rethinking the Lower Bound on Aerosol Radiative Forcing― Journal of Climate, 2017, 30, 6579-6584.	3.2	22
28	Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition. Earth System Science Data, 2020, 12, 1649-1677.	9.9	22
29	Cloud base height retrieval from multi-angle satellite data. Atmospheric Measurement Techniques, 2019, 12, 1841-1860.	3.1	18
30	Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. Geoscientific Model Development, 2022, 15, 2881-2916.	3.6	17
31	Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations. Atmospheric Chemistry and Physics, 2019, 19, 15415-15429.	4.9	16
32	Cloud Properties over the North Slope of Alaska: Identifying the Prevailing Meteorological Regimes. Journal of Climate, 2012, 25, 8238-8258.	3.2	14
33	Silicon pad detectors for the PHOBOS experiment at RHIC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 461, 143-149.	1.6	12
34	Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes. Atmospheric Chemistry and Physics, 2019, 19, 10571-10589.	4.9	10
35	Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). Bulletin of the American Meteorological Society, 0, , 130109100058001.	3.3	8
36	Extratropical Shortwave Cloud Feedbacks in the Context of the Global Circulation and Hydrological Cycle. Geophysical Research Letters, 2022, 49, .	4.0	8

#	Article	IF	CITATIONS
37	The effect of rapid adjustments to halocarbons and N2O on radiative forcing. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	7
38	A new classification of satellite-derived liquid water cloud regimes at cloud scale. Atmospheric Chemistry and Physics, 2020, 20, 2407-2418.	4.9	7
39	Search for narrow resonances lighter than Ï' mesons. European Physical Journal C, 2009, 62, 319-326.	3.9	6
40	Analysis of diagnostic climate model cloud parametrizations using largeâ€eddy simulations. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2199-2205.	2.7	6
41	The Global Atmosphereâ€aerosol Model ICONâ€Aâ€HAM2.3–Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness. Journal of Advances in Modeling Earth Systems, 2022, 14,	3.8	6
42	The PHOBOS silicon sensors. Nuclear Physics, Section B, Proceedings Supplements, 1999, 78, 245-251.	0.4	5
43	First performance results of the Phobos silicon detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 473, 197-204.	1.6	5
44	Scientific data from precipitation driver response model intercomparison project. Scientific Data, 2022, 9, 123.	5.3	5
45	The Southern Hemisphere Midlatitude Circulation Response to Rapid Adjustments and Sea Surface Temperature Driven Feedbacks. Journal of Climate, 2020, 33, 9673-9690.	3.2	3
46	Substantial Climate Response outside the Target Area in an Idealized Experiment of Regional Radiation Management. Climate, 2021, 9, 66.	2.8	2
47	The Fall and Rise of the Global Climate Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002781.	3.8	2
48	Observed aerosol effects on marine cloud nucleation and supersaturation. , 2013, , .		1
49	First results from the PHOBOS experiment at RHIC. AIP Conference Proceedings, 2001, , .	0.4	0
50	Performance of the PHOBOS silicon sensors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 478, 299-302.	1.6	0
51	Effects of diabatic and adiabatic processes on relative humidity in a GCM, and relationship between mid-tropospheric vertical wind and cloud-forming and cloud-dissipating processes. Tellus, Series A: Dynamic Meteorology and Oceanography, 2017, 69, 1272753.	1.7	0