Yuanyuan Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7710085/publications.pdf

Version: 2024-02-01

471509 552781 31 750 17 26 citations h-index g-index papers 32 32 32 1067 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Uncovering the molecular mechanisms of Ilex pubescens against myocardial ischemia-reperfusion injury using network pharmacology analysis and experimental pharmacology. Journal of Ethnopharmacology, 2022, 282, 114611.	4.1	7
2	Integrated chemical profiling, network pharmacology and pharmacological evaluation to explore the potential mechanism of Xinbao pill against myocardial ischaemia–reperfusion injury. Pharmaceutical Biology, 2022, 60, 255-273.	2.9	5
3	A Systematic Review and Meta-Analysis of the Efficacy and Safety of Xinbao Pill in Chronic Heart Failure. Frontiers in Pharmacology, 2022, 13, 846867.	3.5	3
4	The anticardiac fibrosis of total alkaloids of <i>Plumula nelumbinis</i> by regulating circulating lipidomic profile: In vivo study. Journal of Food Biochemistry, 2022, , e14194.	2.9	0
5	Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. Journal of Ethnopharmacology, 2021, 266, 113429.	4.1	35
6	Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3 inflammasome activation in myocardial ischemia-reperfusion injury. Theranostics, 2021, 11, 861-877.	10.0	30
7	Mechanism and therapeutic strategies of depression after myocardial infarction. Psychopharmacology, 2021, 238, 1401-1415.	3.1	8
8	Epigenetics-based therapeutics for myocardial fibrosis. Life Sciences, 2021, 271, 119186.	4.3	22
9	Cardioprotective 22-hydroxylanostane triterpenoids from the fruiting bodies of Phellinus igniarius. Phytochemistry, 2021, 191, 112907.	2.9	8
10	Therapeutic perspectives of heat shock proteins and their protein-protein interactions in myocardial infarction. Pharmacological Research, 2020, 160, 105162.	7.1	9
11	Botanical Drug Puerarin Promotes Neuronal Survival and Neurite Outgrowth against MPTP/MPP+-Induced Toxicity via Progesterone Receptor Signaling. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	4.0	15
12	Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	4.0	11
13	N-Propargyl caffeate amide (PACA) prevents cardiac fibrosis in experimental myocardial infarction by promoting pro-resolving macrophage polarization. Aging, 2020, 12, 5384-5398.	3.1	12
14	Natural alkaloids from <i>lotus plumule</i> ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation. Food and Function, 2019, 10, 6062-6073.	4.6	27
15	Pro-resolving lipid mediators as therapeutic leads for cardiovascular diseases. Expert Opinion on Therapeutic Targets, 2019, 23, 423-436.	3.4	13
16	N-Propargyl Caffeamide (PACA) Ameliorates Dopaminergic Neuronal Loss and Motor Dysfunctions in MPTP Mouse Model of Parkinson's Disease and in MPP+-Induced Neurons via Promoting the Conversion of proNGF to NGF. Molecular Neurobiology, 2018, 55, 2258-2267.	4.0	28
17	Gallic Acid-L-Leucine Conjugate Protects Mice against LPS-Induced Inflammation and Sepsis via Correcting Proinflammatory Lipid Mediator Profiles and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	4.0	18
18	N-Propargyl Caffeamide Skews Macrophages Towards a Resolving M2-Like Phenotype Against Myocardial Ischemic Injury via Activating Nrf2/HO-1 Pathway and Inhibiting NF-Ä,B Pathway. Cellular Physiology and Biochemistry, 2018, 47, 2544-2557.	1.6	21

#	Article	IF	CITATIONS
19	Macrophage Polarization as a Therapeutic Target in Myocardial Infarction. Current Drug Targets, 2018, 19, 651-662.	2.1	53
20	$\ddot{\text{l}}$ %-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1 $\hat{\text{l}}$ ± and iNOS. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1595-1605.	2.4	45
21	Molecular Diversity and Potential Anti-neuroinflammatory Activities of Cyathane Diterpenoids from the Basidiomycete Cyathus africanus. Scientific Reports, 2017, 7, 8883.	3.3	28
22	Therapeutic Potential of Heme Oxygenase-1/carbon Monoxide System Against Ischemia-Reperfusion Injury. Current Pharmaceutical Design, 2017, 23, 3884-3898.	1.9	62
23	Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways. Aging, 2017, 9, 2069-2082.	3.1	105
24	Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3 <i>$\hat{r}^2 < \hat{r}^2 > \hat{r}$</i>	4.0	40
25	Gallic acid- l -leucine (GAL) conjugate enhances macrophage phagocytosis via inducing leukotriene B4 12-hydroxydehydrogenase (LTB4DH) expression. Molecular Immunology, 2016, 74, 39-46.	2.2	8
26	Botanical Drug Puerarin Attenuates 6-Hydroxydopamine (6-OHDA)-Induced Neurotoxicity via Upregulating Mitochondrial Enzyme Arginase-2. Molecular Neurobiology, 2016, 53, 2200-2211.	4.0	20
27	Plant Natural Products Calycosin and Gallic Acid Synergistically Attenuate Neutrophil Infiltration and Subsequent Injury in Isoproterenol-Induced Myocardial Infarction: A Possible Role for Leukotriene B4 12-Hydroxydehydrogenase?. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-12.	4.0	32
28	Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin. Journal of Nutritional Biochemistry, 2015, 26, 146-154.	4.2	32
29	<i>N</i> -Propargyl Caffeate Amide (PACA) Potentiates Nerve Growth Factor (NGF)-Induced Neurite Outgrowth and Attenuates 6-Hydroxydopamine (6-OHDA)-Induced Toxicity by Activating the Nrf2/HO-1 Pathway. ACS Chemical Neuroscience, 2015, 6, 1560-1569.	3.5	24
30	Releasing Nrf2 to promote neurite outgrowth. Neural Regeneration Research, 2015, 10, 1934.	3.0	7
31	Bioactivity-Guided Fractionation Identifies Amygdalin as a Potent Neurotrophic Agent from Herbal Medicine <i>Semen Persicae</i> Sextract. BioMed Research International, 2014, 2014, 1-10.	1.9	22