
Jinwoo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7709983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Molecular Microbiology, 2004, 54, 921-934.	2.5	201
2	Polar growth in the Alphaproteobacterial order Rhizobiales. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1697-1701.	7.1	195
3	Toxoflavin Produced by Burkholderia glumae Causing Rice Grain Rot Is Responsible for Inducing Bacterial Wilt in Many Field Crops. Plant Disease, 2003, 87, 890-895.	1.4	173
4	Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control, 2006, 39, 282-289.	3.0	129
5	Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Molecular Microbiology, 2007, 64, 165-179.	2.5	108
6	Small-molecule inhibitor binding to an <i>N</i> -acyl-homoserine lactone synthase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12089-12094.	7.1	102
7	Genetic analysis of <i><scp>A</scp>grobacterium tumefaciens</i> unipolar polysaccharide production reveals complex integrated control of the motileâ€toâ€sessile switch. Molecular Microbiology, 2013, 89, 929-948.	2.5	97
8	Involvement of a Quorum-Sensing-Regulated Lipase Secreted by a Clinical Isolate of Burkholderia glumae in Severe Disease Symptoms in Rice. Applied and Environmental Microbiology, 2007, 73, 4950-4958.	3.1	82
9	Genetic Diversity and Distribution of Korean Isolates of <i>Ralstonia solanacearum</i> . Plant Disease, 2007, 91, 1277-1287.	1.4	73
10	Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Research in Microbiology, 2012, 163, 674-684.	2.1	65
11	Coordination of Division and Development Influences Complex Multicellular Behavior in Agrobacterium tumefaciens. PLoS ONE, 2013, 8, e56682.	2.5	51
12	Acaricidal and oviposition deterring effects of santalol identified in sandalwood oil against two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Pest Science, 2011, 84, 495-501.	3.7	47
13	Complete Genome Sequence of Burkholderia gladioli BSR3. Journal of Bacteriology, 2011, 193, 3149-3149.	2.2	47
14	The Quorum Sensing-Dependent Gene <i>katG</i> of <i>Burkholderia glumae</i> Is Important for Protection from Visible Light. Journal of Bacteriology, 2009, 191, 4152-4157.	2.2	46
15	Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium <i>Burkholderia glumae</i> . Proteomics, 2008, 8, 106-121.	2.2	43
16	Regulation of Universal Stress Protein Genes by Quorum Sensing and RpoS in Burkholderia glumae. Journal of Bacteriology, 2012, 194, 982-992.	2.2	41
17	Quorum Sensing Controls Flagellar Morphogenesis in Burkholderia glumae. PLoS ONE, 2014, 9, e84831.	2.5	30
18	Complete Genome Sequence of the Rice Pathogen Pantoea ananatis Strain PA13. Journal of Bacteriology, 2012, 194, 531-531.	2.2	26

Јілжоо Кім

#	Article	IF	CITATIONS
19	<i>Pectobacterium carotovorum</i> subsp. <i>brasiliense</i> Causing Soft Rot on Paprika in Korea. Journal of Phytopathology, 2013, 161, 125-127.	1.0	24
20	Identification, characterization and regulation of two secreted polygalacturonases of the emerging rice pathogen Burkholderia glumae. FEMS Microbiology Ecology, 2008, 65, 251-262.	2.7	22
21	A novel lightâ€dependent selection marker system in plants. Plant Biotechnology Journal, 2011, 9, 348-358.	8.3	22
22	A simple and sensitive biosensor strain for detecting toxoflavin using β-galactosidase activity. Biosensors and Bioelectronics, 2013, 50, 256-261.	10.1	21
23	Critical role of quorum sensing-dependent glutamate metabolism in homeostatic osmolality and outer membrane vesiculation in Burkholderia glumae. Scientific Reports, 2017, 7, 44195.	3.3	21
24	Inhibition of Salmonella enterica growth by competitive exclusion during early alfalfa sprout development using a seed-dwelling Erwinia persicina strain EUS78. International Journal of Food Microbiology, 2020, 312, 108374.	4.7	21
25	Biochemical Evidence for ToxR and ToxJ Binding to the <i>tox</i> Operons of <i>Burkholderia glumae</i> and Mutational Analysis of ToxR. Journal of Bacteriology, 2009, 191, 4870-4878.	2.2	19
26	Dual-Purpose Inoculants and Their Effects on Corn Silage. Microorganisms, 2020, 8, 765.	3.6	19
27	An HrpBâ€dependent but type Illâ€independent extracellular aspartic protease is a virulence factor of <i>Ralstonia solanacearum</i> . Molecular Plant Pathology, 2011, 12, 373-380.	4.2	17
28	Anthracnose Caused by <i>Colletotrichum horii</i> on Sweet Persimmon in Korea: Dissemination of Conidia and Disease Development. Journal of Phytopathology, 2013, 161, 497-502.	1.0	17
29	<i>Pantoea ananatis</i> carotenoid production confers toxoflavin tolerance and is regulated by Hfqâ€controlled quorum sensing. MicrobiologyOpen, 2021, 10, e1143.	3.0	15
30	Colonization and Population Changes of a Biocontrol Agent, Paenibacillus polymyxa E681, in Seeds and Roots. Plant Pathology Journal, 2004, 20, 97-102.	1.7	14
31	Quorum Sensing-Independent Cellulase-Sensitive Pellicle Formation Is Critical for Colonization of Burkholderia glumae in Rice Plants. Frontiers in Microbiology, 2019, 10, 3090.	3.5	13
32	Identification of <i>Lasiodiplodia pseudotheobromae</i> causing mango dieback in Korea. Canadian Journal of Plant Pathology, 2017, 39, 241-245.	1.4	12
33	<i>Pantoea stewartii</i> Causing Stewart's Wilt on <i>Dracaena sanderiana</i> in Korea. Journal of Phytopathology, 2013, 161, 578-581.	1.0	10
34	Identification of Pseudomonas syringae pv. syringae causing bacterial leaf blight of Miscanthus sinensis. Journal of Plant Diseases and Protection, 2017, 124, 97-100.	2.9	10
35	Tetranychus urticae (Acari: Tetranychidae) transmits Acidovorax citrulli, causal agent of bacterial fruit blotch of watermelon. Experimental and Applied Acarology, 2016, 69, 445-451.	1.6	9
36	Dual adhesive unipolar polysaccharides synthesized by overlapping biosynthetic pathways in <i>Agrobacterium tumefaciens</i> . Molecular Microbiology, 2022, 117, 1023-1047.	2.5	9

Јімжоо Кім

#	Article	IF	CITATIONS
37	Aversion center blackening of muskmelon fruit caused by Pseudomonas oryzihabitans, an opportunistic pathogen of humans and warm-blooded animals. International Journal of Food Microbiology, 2019, 291, 1-4.	4.7	8
38	Guignardia bidwellii causes leaf spot on Boston ivy in South Korea. Australasian Plant Disease Notes, 2015, 10, 1.	0.7	7
39	Isolation and Characterization of Avirulent and Virulent Strains of Agrobacterium tumefaciens from Rose Crown Gall in Selected Regions of South Korea. Plants, 2019, 8, 452.	3.5	6
40	Anthracnose on postharvest avocado caused by <i>Colletotrichum kahawae</i> subsp. <i>ciggaro</i> in South Korea. Canadian Journal of Plant Pathology, 2020, 42, 508-513.	1.4	6
41	Two Genetically Distinct Groups of Acidovorax citrulli are Present in Watermelon-growing Fields in Korea. Journal of Agriculture & Life Science, 2016, 50, 53-59.	0.2	6
42	Postharvest soft rot on Citrullus vulgaris caused by Rhizopus oryzae in South Korea. Australasian Plant Disease Notes, 2014, 9, 1.	0.7	5
43	Population changes and growth modeling of Salmonella enterica during alfalfa seed germination and early sprout development. Food Science and Biotechnology, 2018, 27, 1865-1869.	2.6	5
44	Simple and economical biosensors for distinguishing Agrobacterium-mediated plant galls from nematode-mediated root knots. Scientific Reports, 2019, 9, 17961.	3.3	5
45	Bacterial shoot blight caused by Pseudomonas cerasi, a new pathogen of pear tree. Australasian Plant Disease Notes, 2020, 15, 1.	0.7	5
46	Effects of Inoculants Producing Antifungal and Carboxylesterase Activities on Corn Silage and Its Shelf Life against Mold Contamination at Feed-Out Phase. Microorganisms, 2021, 9, 558.	3.6	5
47	Anti-quorum sensing and anti-biofilm formation activities of plant extracts from South Korea. Asian Pacific Journal of Tropical Biomedicine, 2018, 8, 411.	1.2	5
48	Soft Rot onCucumis melovar.makuwaCaused byRhizopus oryzae. Mycobiology, 2010, 38, 336.	1.7	4
49	Antibacterial properties and major bioactive components of <i>Mentha piperita</i> essential oils against bacterial fruit blotch of watermelon. Archives of Phytopathology and Plant Protection, 2016, 49, 325-334.	1.3	4
50	ldentification of Neocosmospora ipomoeae causing tomato stem rot in Korea. Australasian Plant Disease Notes, 2017, 12, 1.	0.7	4
51	Genetic Diversity and Distribution of Korean Isolates of <i>Burkholderia glumae</i> . Plant Disease, 2021, 105, 1398-1407.	1.4	4
52	Bacterial Disease Complex Including Bleached Spot, Soft Rot, and Blight on Onion Seedlings caused by Complex Infections. Plant Disease, 2021, , PDIS03210484RE.	1.4	4
53	Bacterial shoot blight of sweet crab apple caused by Pseudomonas viridiflava. Forest Pathology, 2020, 50, e12603.	1.1	4
54	Rhizopus fruit Rot Caused by Rhizopus oryzae on Strawberry. Journal of Agriculture & Life Science, 2014, 48, 27-34.	0.2	4

Јімжоо Кім

#	Article	IF	CITATIONS
55	First report of Pseudomonas syringae pv. syringae causing bacterial leaf blight on MiscanthusÂ×Âgiganteus. Journal of Plant Diseases and Protection, 2016, 123, 137-140.	2.9	3
56	A novel toxoflavinâ€quenching regulation in bacteria and its application to resistance cultivars. Microbial Biotechnology, 2021, 14, 1657-1670.	4.2	3
57	First report of rust on onion caused by <i>Puccinia allii</i> in Korea. Canadian Journal of Plant Pathology, 2021, 43, S347-S351.	1.4	3
58	Influence of genomic structural variations and nutritional conditions on the emergence of quorum sensing-dependent gene regulation defects in Burkholderia glumae. Frontiers in Microbiology, 0, 13, .	3.5	3
59	Antioxidant activity of water extracts of persimmon flower buds. Food Science and Biotechnology, 2015, 24, 281-286.	2.6	2
60	Grey mould control by oxalate degradation using non-antifungal Pseudomonas abietaniphila strain ODB36. Scientific Reports, 2020, 10, 1605.	3.3	2
61	Asiatic Dayflower Rust Caused by Uromyces commelinae and its Phylogenetic Analysis Using rDNA Internal Transcribed Spacer Region. Journal of Agriculture & Life Science, 2014, 48, 21-29.	0.2	2
62	The occurrence of Sclerotium rot on white clover (Trifolium repens L.) caused by Sclerotium rolfsii in Korea. Australasian Plant Disease Notes, 2013, 8, 89-91.	0.7	1
63	The occurrence of sclerotium rot on Catharanthus roseus caused by Sclerotium rolfsii in South Korea. Australasian Plant Disease Notes, 2014, 9, 1.	0.7	1
64	Outbreak of Rhizopus Rot Caused by Rhizopus oryzae on Seedlings of Grafted Cucumber on Pumpkin Rootstock in South Korea. Journal of Phytopathology, 2015, 163, 670-674.	1.0	1
65	The occurrence of southern blight onAllium hookericaused bySclerotium rolfsiiin Korea. Canadian Journal of Plant Pathology, 2015, 37, 519-522.	1.4	1
66	The occurrence of leaf blight on Ophiopogon japonicus caused by Phyllosticta ophiopogonis in Korea. Australasian Plant Disease Notes, 2015, 10, 1.	0.7	1
67	Black root rot caused by <i>Thielaviopsis basicola</i> on Korean ginseng seedlings grown for the fresh salad market. Canadian Journal of Plant Pathology, 2016, 38, 258-261.	1.4	1
68	Bacterial blight on Dracaena sanderiana caused by Burkholderia cepacia. Australasian Plant Disease Notes, 2020, 15, 1.	0.7	1
69	First Report of Root Mat Disease in a Hydroponic Tomato Production System Caused by Rhizogenic Agrobacterium Biovar 1 in South Korea. Plant Disease, 2021, 105, 1191.	1.4	1
70	Oak Tree Canker Disease Supports Arthropod Diversity in a Natural Ecosystem. Plant Pathology Journal, 2014, 30, 43-50.	1.7	1
71	Orchardgrass ACTIVATOR OF HSP90 ATPASE possesses autonomous chaperone properties and activates Hsp90 transcription to enhance thermotolerance. Biochemical and Biophysical Research Communications, 2022, 586, 171-176.	2.1	1
72	Negatively Regulated Aerobactin and Desferrioxamine E by Fur in Pantoea ananatis Are Required for Full Siderophore Production and Antibacterial Activity, but Not for Virulence. Applied and Environmental Microbiology, 2022, 88, aem0240521.	3.1	1

Јімжоо Кім

#	Article	IF	CITATIONS
73	The occurrence of sclerotium rot on <i>Momordica charantia</i> caused by <i>Sclerotium rolfsii</i> in Korea. Archives of Phytopathology and Plant Protection, 2016, 49, 43-47.	1.3	Ο
74	Oxalis purpurea sclerotium rot caused by Athelia rolfsii. Australasian Plant Disease Notes, 2018, 13, 1.	0.7	0
75	Bacterial blight on Sansevieria cylindrica caused by Pseudomonas sp Australasian Plant Disease Notes, 2021, 16, 1.	0.7	Ο