
Andreas Mattsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7709567/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Determination of Volatile Organic Compounds in Water by Attenuated Total Reflection Infrared Spectroscopy and Diamond-Like Carbon Coated Silicon Wafers. Chemosensors, 2020, 8, 75.	3.6	7
2	Ni–Ag Nanostructure-Modified Graphitic Carbon Nitride for Enhanced Performance of Solar-Driven Hydrogen Production from Ethanol. ACS Applied Energy Materials, 2020, 3, 10131-10138.	5.1	8
3	Synergistic TiO2/VO2 Window Coating with Thermochromism, Enhanced Luminous Transmittance, and Photocatalytic Activity. Joule, 2019, 3, 2457-2471.	24.0	42
4	Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites. Applied Catalysis B: Environmental, 2019, 259, 118097.	20.2	32
5	Corrosion Detection by Infrared Attenuated Total Reflection Spectroscopy via Diamond-Like Carbon-Coated Silicon Wafers and Iron-Sensitive Dyes. Sensors, 2019, 19, 3373.	3.8	6
6	Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites. Catalysis Science and Technology, 2019, 9, 1816-1824.	4.1	13
7	Chemical warfare agent simulant DMMP reactive adsorption on TiO2/graphene oxide composites prepared via titanium peroxo-complex or urea precipitation. Journal of Hazardous Materials, 2018, 359, 482-490.	12.4	23
8	Spectral Selective Solar Light Enhanced Photocatalysis: TiO2/TiAlN Bilayer Films. Topics in Catalysis, 2018, 61, 1607-1614.	2.8	4
9	Co-adsorption of oxygen and formic acid on rutile TiO 2 (110) studied by infrared reflection-absorption spectroscopy. Surface Science, 2017, 663, 47-55.	1.9	10
10	The Importance of Oxygen Vacancies in Nanocrystalline WO _{3–<i>x</i>} Thin Films Prepared by DC Magnetron Sputtering for Achieving High Photoelectrochemical Efficiency. Journal of Physical Chemistry C, 2017, 121, 7412-7420.	3.1	35
11	Simulation of IRRAS Spectra for Molecules on Oxide Surfaces: CO on TiO ₂ (110). Journal of Physical Chemistry C, 2015, 119, 5403-5411.	3.1	16
12	Development of W–SiO2 and Nb–TiO2 solar absorber coatings for combined heat and power systems at intermediate operation temperatures. Solar Energy Materials and Solar Cells, 2015, 133, 180-193.	6.2	33
13	Demonstrating Online Monitoring of Air Pollutant Photodegradation in a 3D Printed Gas-Phase Photocatalysis Reactor. Journal of Chemical Education, 2015, 92, 678-682.	2.3	34
14	<i>In Situ </i> <scp>FTIR</scp> Spectroscopy Study of the Photodegradation of Acetaldehyde and azo Dye Photobleaching on Bismuthâ€Modified TiO ₂ . Photochemistry and Photobiology, 2015, 91, 48-58.	2.5	6
15	Infrared spectroscopy study of adsorption and photodecomposition of formic acid on reduced and defective rutile TiO2 (110) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	12
16	Role of bismuth in nano-structured doped TiO2 photocatalyst prepared by environmentally benign soft synthesis. Journal of Materials Science, 2014, 49, 3560-3571.	3.7	11
17	Adsorption of formic acid on rutile TiO2 (110) revisited: An infrared reflection-absorption spectroscopy and density functional theory study. Journal of Chemical Physics, 2014, 140, 034705.	3.0	49
18	New Cermet Coatings for Mid-temperature Applications for Solar Concentrated Combine Heat and Power System. Energy Procedia, 2014, 48, 242-249.	1.8	6

ANDREAS MATTSSON

#	Article	IF	CITATIONS
19	Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles. Journal of Solid State Chemistry, 2013, 199, 212-223.	2.9	16
20	Adsorption and Photoinduced Decomposition of Acetone and Acetic Acid on Anatase, Brookite, and Rutile TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 14121-14132.	3.1	169
21	Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles. Applied Catalysis B: Environmental, 2009, 92, 401-410.	20.2	49
22	Effect of sample preparation and humidity on the photodegradation rate of CEES on pure and Zn doped anatase TiO2 nanoparticles prepared by homogeneous hydrolysis. Applied Catalysis B: Environmental, 2009, 88, 194-203.	20.2	27
23	Oxygen Diffusion and Photon-Induced Decomposition of Acetone on Zr- and Nb-Doped TiO2 Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 3810-3818.	3.1	18
24	Warfare Agents Degradation on Zirconium Doped Titania. Microscopy and Microanalysis, 2009, 15, 1038-1039.	0.4	5
25	A novel ATR-FTIR method for functionalised surface characterisation. Surface and Interface Analysis, 2008, 40, 623-626.	1.8	8
26	A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2 nanoparticles: Role of surface intermediates. Journal of Catalysis, 2007, 251, 131-144.	6.2	128
27	Adsorption and Solar Light Decomposition of Acetone on Anatase TiO2 and Niobium Doped TiO2 Thin Films. Journal of Physical Chemistry B, 2006, 110, 1210-1220.	2.6	159
28	Adsorption and photocatalytic degradation of diisopropyl fluorophosphate and dimethyl methylphosphonate over dry and wet rutile TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 125-134.	3.9	50
29	Surface characteristics and electronic structure of photocatalytic reactions on TiO 2 and doped TiO 2 nanoparticles. , 2006, , .		4
30	Solar light decomposition of DFP on the surface of anatase and rutile TiO2 prepared by hydrothermal treatment of microemulsions. Surface Science, 2005, 584, 98-105.	1.9	15
31	TiO ₂ /VO ₂ Bilayer Coatings for Glazing: Synergistically Enhanced Photocatalytic, Thermochromic, and Luminous Properties. SSRN Electronic Journal, 0, , .	0.4	Ο