
Hanne Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7709564/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021, 590, 630-634.	13.7	995
2	DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369, 806-811.	6.0	978
3	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	13.9	936
4	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	6.0	789
5	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	13.7	765
6	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
7	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	13.7	699
8	Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine, 2015, 21, 1065-1070.	15.2	567
9	REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science, 2020, 370, 1110-1115.	6.0	476
10	A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nature Medicine, 2010, 16, 334-338.	15.2	403
11	Rapid development of a DNA vaccine for Zika virus. Science, 2016, 354, 237-240.	6.0	348
12	Induction of Broadly Neutralizing H1N1 Influenza Antibodies by Vaccination. Science, 2010, 329, 1060-1064.	6.0	328
13	SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nature Microbiology, 2021, 6, 1188-1198.	5.9	314
14	Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nature Medicine, 2020, 26, 1694-1700.	15.2	275
15	A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity, 2020, 53, 724-732.e7.	6.6	267
16	lmmune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. Science, 2021, 373, eabj0299.	6.0	244
17	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	13.5	228
18	Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nature Immunology, 2019, 20, 362-372.	7.0	211

HANNE ANDERSEN

#	Article	lF	CITATIONS
19	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	13.7	199
20	Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell, 2020, 183, 1354-1366.e13.	13.5	184
21	mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.	13.5	179
22	The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Science Translational Medicine, 2022, 14, eabl8124.	5.8	143
23	Prior Exposure to Zika Virus Significantly Enhances Peak Dengue-2 Viremia in Rhesus Macaques. Scientific Reports, 2017, 7, 10498.	1.6	121
24	Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science, 2022, 377, .	6.0	120
25	Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters. Med, 2022, 3, 262-268.e4.	2.2	117
26	Electroporation of Synthetic DNA Antigens Offers Protection in Nonhuman Primates Challenged with Highly Pathogenic Avian Influenza Virus. Journal of Virology, 2009, 83, 4624-4630.	1.5	113
27	Newcastle Disease Virus-Vectored Vaccines Expressing the Hemagglutinin or Neuraminidase Protein of H5N1 Highly Pathogenic Avian Influenza Virus Protect against Virus Challenge in Monkeys. Journal of Virology, 2010, 84, 1489-1503.	1.5	86
28	Protection against SARS-CoV-2 Beta variant in mRNA-1273 vaccine–boosted nonhuman primates. Science, 2021, 374, 1343-1353.	6.0	83
29	Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature, 2022, 601, 410-414.	13.7	71
30	Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	68
31	Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell, 2022, 185, 113-130.e15.	13.5	64
32	Vaccine protection against the SARS-CoV-2 Omicron variant in macaques. Cell, 2022, 185, 1549-1555.e11.	13.5	59
33	mRNA-1273 protects against SARS-CoV-2 beta infection in nonhuman primates. Nature Immunology, 2021, 22, 1306-1315.	7.0	57
34	Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	56
35	Identification of the ancestral killer immunoglobulin-like receptor gene in primates. BMC Genomics, 2006, 7, 209.	1.2	53
36	Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight, 2021, 6, .	2.3	52

HANNE ANDERSEN

#	Article	IF	CITATIONS
37	Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell, 2021, 184, 3467-3473.e11.	13.5	49
38	Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
39	Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Molecular Therapy, 2016, 24, 2021-2032.	3.7	41
40	Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. Nature, 2021, 596, 423-427.	13.7	40
41	A Recombinant Subunit Based Zika Virus Vaccine Is Efficacious in Non-human Primates. Frontiers in Immunology, 2018, 9, 2464.	2.2	36
42	Synthetic multiantigen MVA vaccine COH04S1 protects against SARS-CoV-2 in Syrian hamsters and non-human primates. Npj Vaccines, 2022, 7, 7.	2.9	35
43	Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj3789.	5.8	32
44	In Vivo Assembly of Nanoparticles Achieved through Synergy of Structureâ€Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity. Advanced Science, 2020, 7, 1902802.	5.6	30
45	Intradermal-delivered DNA vaccine induces durable immunity mediating a reduction in viral load in a rhesus macaque SARS-CoV-2 challenge model. Cell Reports Medicine, 2021, 2, 100420.	3.3	28
46	CoVaccine HTâ,,¢ Adjuvant Potentiates Robust Immune Responses to Recombinant SARS-CoV-2 Spike S1 Immunization. Frontiers in Immunology, 2020, 11, 599587.	2.2	27
47	SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques. Science Advances, 2022, 8, eabl6015.	4.7	27
48	Long-Term Programming of Antigen-Specific Immunity from Gene Expression Signatures in the PBMC of Rhesus Macaques Immunized with an SIV DNA Vaccine. PLoS ONE, 2011, 6, e19681.	1.1	25
49	Evaluation of a Multivalent Vaccine against Lymphatic Filariasis in Rhesus macaque Model. PLoS ONE, 2014, 9, e112982.	1.1	22
50	Transduction with Human Telomerase Reverse Transcriptase Immortalizes A Rhesus Macaque CD8+T Cell Clone with Maintenance of Surface Marker Phenotype And Function. AIDS Research and Human Retroviruses, 2007, 23, 456-465.	0.5	21
51	Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method. Respiratory Research, 2011, 12, 153.	1.4	21
52	Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike. Viruses, 2021, 13, 2434.	1.5	19
53	Immunogenicity of HIV Virus-Like Particles in Rhesus Macaques by Intranasal Administration. Vaccine Journal, 2012, 19, 970-973.	3.2	17
54	High dose of plasmid IL-15 inhibits immune responses in an influenza non-human primates immunogenicity model. Virology, 2009, 393, 49-55.	1.1	16

HANNE ANDERSEN

#	Article	IF	CITATIONS
55	A liposome-displayed hemagglutinin vaccine platform protects mice and ferrets from heterologous influenza virus challenge. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
56	Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Science Translational Medicine, 2021, 13, eabj2641.	5.8	15
57	Preclinical evaluation of a candidate naked plasmid DNA vaccine against SARS-CoV-2. Npj Vaccines, 2021, 6, 156.	2.9	15
58	An Interleukin 12 Adjuvanted Herpes Simplex Virus 2 DNA Vaccine Is More Protective Than a Glycoprotein D Subunit Vaccine in a High-Dose Murine Challenge Model. Viral Immunology, 2017, 30, 178-195.	0.6	14
59	Defining the determinants of protection against SARS-CoV-2 infection and viral control in a dose-down Ad26.CoV2.S vaccine study in nonhuman primates. PLoS Biology, 2022, 20, e3001609.	2.6	14
60	Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HTâ,,¢ adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine: X, 2021, 9, 100126.	0.9	13
61	A homologous or variant booster vaccine after Ad26.COV2.S immunization enhances SARS-CoV-2–specific immune responses in rhesus macaques. Science Translational Medicine, 2022, 14, eabm4996.	5.8	13
62	Characterization of rhesus macaque natural killer activity against a rhesus-derived target cell line at the single-cell level. Cellular Immunology, 2004, 231, 85-95.	1.4	12
63	Capture of antigen-specific T lymphocytes from human blood by selective immortalization to establish long-term T-cell lines maintaining primary cell characteristicsâ~†. Immunology Letters, 2006, 105, 26-37.	1.1	12
64	Control of SARS-CoV-2 infection after Spike DNA or Spike DNA+Protein co-immunization in rhesus macaques. PLoS Pathogens, 2021, 17, e1009701.	2.1	12
65	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	2.2	11
66	An intranasally administrated SARS-CoV-2 beta variant subunit booster vaccine prevents beta variant replication in rhesus macaques. , 2022, 1, .		10
67	Immune Responses of a Novel Bi-Cistronic SARS-CoV-2 DNA Vaccine Following Intradermal Immunization With Suction Delivery. Frontiers in Virology, 0, 2, .	0.7	9
68	COH04S1 and beta sequence-modified vaccine protect hamsters from SARS-CoV-2 variants. IScience, 2022, 25, 104457.	1.9	8
69	Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. Journal of Virology, 2022, 96, JVI0159921.	1.5	5
70	TCRÎ ² enhancer activation in early and late lymphoid progenitors. Cellular Immunology, 2007, 247, 59-71.	1.4	3
71	TCRβ enhancer activation occurs in some but not all cells with T cell lineage developmental potential. Cellular Immunology, 2003, 222, 164-174.	1.4	2
72	Passive transfer of Ad26.COV2.S-elicited IgG from humans attenuates SARS-CoV-2 disease in hamsters. Npj Vaccines, 2022, 7, 2.	2.9	2

#	Article	IF	CITATIONS
73	Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Veterinary Pathology, 2022, , 030098582210957.	0.8	2