
Andrew F Bent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/770887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring Soybean Resistance to Soybean Cyst Nematode. Annual Review of Phytopathology, 2022, 60, 379-409.	7.8	10
2	Soybean Cyst Nematode Resistance Quantitative Trait Locus <i>cqSCN-006</i> Alters the Expression of a Î ³ -SNAP Protein. Molecular Plant-Microbe Interactions, 2021, 34, 1433-1445.	2.6	10
3	Coordinated regulation of plant immunity by poly(ADP-ribosyl)ation and K63-linked ubiquitination. Molecular Plant, 2021, 14, 2088-2103.	8.3	14
4	Detection of rare nematode resistance Rhg1 haplotypes in Glycine soja and a novel Rhg1 α‧NAP. Plant Genome, 2021, , e20152.	2.8	1
5	Soybean Resistance Locus <i>Rhg1</i> Confers Resistance to Multiple Cyst Nematodes in Diverse Plant Species. Phytopathology, 2019, 109, 2107-2115.	2.2	16
6	The <i>rhg1â€a</i> (<i>Rhg1</i> lowâ€copy) nematode resistance source harbors a copiaâ€family retrotransposon within the <i>Rhg1â€</i> encoded αâ€SNAP gene. Plant Direct, 2019, 3, e00164.	1.9	27
7	Agrobacterium-mediated vacuum infiltration and floral dip transformation of rapid-cycling Brassica rapa. BMC Plant Biology, 2019, 19, 246.	3.6	18
8	An atypical N-ethylmaleimide sensitive factor enables the viability of nematode-resistant Rhg1 soybeans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4512-E4521.	7.1	58
9	3-Aminobenzamide Blocks MAMP-Induced Callose Deposition Independently of Its Poly(ADPribosyl)ation Inhibiting Activity. Frontiers in Plant Science, 2018, 9, 1907.	3.6	10
10	A transcriptomics approach uncovers novel roles for poly(ADP-ribosyl)ation in the basal defense response in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0190268.	2.5	16
11	Directed Evolution of FLS2 towards Novel Flagellin Peptide Recognition. PLoS ONE, 2016, 11, e0157155.	2.5	11
12	Disease resistance through impairment of α-SNAP–NSF interaction and vesicular trafficking by soybean <i>Rhg1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7375-E7382.	7.1	71
13	Resistance from relatives. Nature Biotechnology, 2016, 34, 620-621.	17.5	10
14	Rice OsFLS2-Mediated Perception of Bacterial Flagellins Is Evaded by Xanthomonas oryzae pvs. oryzae and oryzicola. Molecular Plant, 2015, 8, 1024-1037.	8.3	60
15	PARP2 Is the Predominant Poly(ADP-Ribose) Polymerase in Arabidopsis DNA Damage and Immune Responses. PLoS Genetics, 2015, 11, e1005200.	3.5	90
16	Microbial Pathogens Trigger Host DNA Double-Strand Breaks Whose Abundance Is Reduced by Plant Defense Responses. PLoS Pathogens, 2014, 10, e1004030.	4.7	99
17	Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode Â. Plant Physiology, 2014, 165, 630-647.	4.8	136
18	FLS2-BAK1 Extracellular Domain Interaction Sites Required for Defense Signaling Activation. PLoS ONE, 2014, 9, e111185.	2.5	23

ANDREW F BENT

#	Article	IF	CITATIONS
19	Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity. PLoS Pathogens, 2013, 9, e1003313.	4.7	57
20	FLS2-Mediated Responses to Ax21-Derived Peptides: Response to the Mueller et al. Commentary. Plant Cell, 2012, 24, 3174-3176.	6.6	5
21	Copy Number Variation of Multiple Genes at <i>Rhg1</i> Mediates Nematode Resistance in Soybean. Science, 2012, 338, 1206-1209.	12.6	535
22	Probing the <i>Arabidopsis</i> Flagellin Receptor: FLS2-FLS2 Association and the Contributions of Specific Domains to Signaling Function. Plant Cell, 2012, 24, 1096-1113.	6.6	104
23	Pathogens Drop the Hint: Don't Forget Phytoalexin Pathways. Cell Host and Microbe, 2011, 9, 169-170.	11.0	2
24	Poly(ADP-ribosyl)ation in plants. Trends in Plant Science, 2011, 16, 372-380.	8.8	94
25	LRR Conservation Mapping to Predict Functional Sites within Protein Leucine-Rich Repeat Domains. PLoS ONE, 2011, 6, e21614.	2.5	46
26	Type III secretionâ€dependent host defence elicitation and type III secretionâ€independent growth within leaves by <i>Xanthomonas campestris</i> pv. <i>campestris</i> . Molecular Plant Pathology, 2011, 12, 731-745.	4.2	20
27	Arabidopsis TTR1 Causes LRR-Dependent Lethal Systemic Necrosis, rather than Systemic Acquired Resistance, to Tobacco Ringspot Virus. Molecules and Cells, 2011, 32, 421-430.	2.6	17
28	The Arabidopsis flagellin receptor FLS2 mediates the perception of Xanthomonas Ax21 secreted peptides. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9286-9291.	7.1	62
29	A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1locus LRR-Kinase on soybean cyst nematode resistance. BMC Plant Biology, 2010, 10, 104.	3.6	77
30	Fine Mapping of the SCN Resistance Locus <i>rhg1â€b</i> from PI 88788. Plant Genome, 2010, 3, .	2.8	56
31	Underexplored Niches in Research on Plant Pathogenic Bacteria. Plant Physiology, 2009, 150, 1631-1637.	4.8	17
32	Disruption of Poly(ADP-ribosyl)ation Mechanisms Alters Responses of Arabidopsis to Biotic Stress. Plant Physiology, 2009, 152, 267-280.	4.8	118
33	Signaling Pathways That Regulate the Enhanced Disease Resistance of <i>Arabidopsis</i> " <i>Defense, No Death</i> ―Mutants. Molecular Plant-Microbe Interactions, 2008, 21, 1285-1296.	2.6	92
34	Discovery of ADP-Ribosylation and Other Plant Defense Pathway Elements Through Expression Profiling of Four Different <i>Arabidopsis–Pseudomonas R-avr</i> Interactions. Molecular Plant-Microbe Interactions, 2008, 21, 646-657.	2.6	57
35	MEKK1 Is Required for flg22-Induced MPK4 Activation in Arabidopsis Plants. Plant Physiology, 2007, 143, 661-669.	4.8	306
36	ldentification and Mutational Analysis of <i>Arabidopsis</i> FLS2 Leucine-Rich Repeat Domain Residues That Contribute to Flagellin Perception. Plant Cell, 2007, 19, 3297-3313.	6.6	97

ANDREW F BENT

#	Article	IF	CITATIONS
37	Elicitors, Effectors, andRGenes: The New Paradigm and a Lifetime Supply of Questions. Annual Review of Phytopathology, 2007, 45, 399-436.	7.8	668
38	Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biology, 2007, 7, 56.	3.6	166
39	<i>Arabidopsis thaliana</i> Floral Dip Transformation Method. , 2006, 343, 87-104.		155
40	Within-Species Flagellin Polymorphism in Xanthomonas campestris pv campestris and Its Impact on Elicitation of Arabidopsis FLAGELLIN SENSING2–Dependent Defenses. Plant Cell, 2006, 18, 764-779.	6.6	181
41	Disease―and Performanceâ€Related Traits of Ethyleneâ€Insensitive Soybean. Crop Science, 2006, 46, 893-901.	1.8	12
42	Flagellin Is Not a Major Defense Elicitor in Ralstonia solanacearum Cells or Extracts Applied to Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2004, 17, 696-706.	2.6	111
43	Identification and functional analysis of Arabidopsis proteins that interact with resistance gene product RPS2 in yeast. Physiological and Molecular Plant Pathology, 2004, 65, 257-267.	2.5	14
44	Arabidopsis DND2, a Second Cyclic Nucleotide-Gated Ion Channel Gene for Which Mutation Causes the "Defense, No Death―Phenotype. Molecular Plant-Microbe Interactions, 2004, 17, 511-520.	2.6	190
45	Deciphering host resistance and pathogen virulence: the Arabidopsis /Pseudomonas interaction as a model. Molecular Plant Pathology, 2003, 4, 517-530.	4.2	57
46	A Cyclic Nucleotide-Gated Ion Channel, CNGC2, Is Crucial for Plant Development and Adaptation to Calcium Stress. Plant Physiology, 2003, 132, 728-731.	4.8	106
47	AGRICULTURE: Reconnecting Farms and Ecosystems- If It Pays. Science, 2002, 298, 1340-1341.	12.6	2
48	Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Functional and Integrative Genomics, 2002, 2, 259-273.	3.5	102
49	Molecular Markers Linked to Brown Stem Rot Resistance Genes, <i>Rbs₁</i> and <i>Rbs₂</i> , in Soybean. Crop Science, 2001, 41, 527-535.	1.8	53
50	Plant mitogen-activated protein kinase cascades: Negative regulatory roles turn out positive. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 784-786.	7.1	65
51	The Leucine-Rich Repeat Domain Can Determine Effective Interaction Between <i>RPS2</i> and Other Host Factors in Arabidopsis <i>RPS2</i> -Mediated Disease Resistance. Genetics, 2001, 158, 439-450.	2.9	66
52	A Second T-Region of the Soybean-Supervirulent Chrysopine-Type Ti Plasmid pTiChry5, and Construction of a Fully Disarmed vir Helper Plasmid. Molecular Plant-Microbe Interactions, 2000, 13, 1081-1091.	2.6	47
53	Identification of Arabidopsis Mutants Exhibiting an Altered Hypersensitive Response in Gene-for-Gene Disease Resistance. Molecular Plant-Microbe Interactions, 2000, 13, 277-286.	2.6	51
54	The Arabidopsis dnd1 "defense, no death" gene encodes a mutated cyclic nucleotide-gated ion channel. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9323-9328.	7.1	523

Andrew F Bent

#	Article	IF	CITATIONS
55	Arabidopsis in Planta Transformation. Uses, Mechanisms, and Prospects for Transformation of Other Species. Plant Physiology, 2000, 124, 1540-1547.	4.8	190
56	Female Reproductive Tissues Are the Primary Target ofAgrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method1. Plant Physiology, 2000, 123, 895-904.	4.8	237
57	Applications of Molecular Biology to Plant Disease and Insect Resistance. Advances in Agronomy, 1999, , 251-298.	5.2	18
58	lsolation of Ethylene-Insensitive Soybean Mutants That Are Altered in Pathogen Susceptibility and Gene-for-Gene Disease Resistance1. Plant Physiology, 1999, 119, 935-950.	4.8	187
59	Regulation of Soybean Nodulation Independent of Ethylene Signaling1. Plant Physiology, 1999, 119, 951-960.	4.8	105
60	Floral dip: a simplified method for <i>Agrobacterium</i> â€mediated transformation of <i>Arabidopsis thaliana</i> . Plant Journal, 1998, 16, 735-743.	5.7	19,148
61	Plant disease reality. Trends in Plant Science, 1998, 3, 405-406.	8.8	0
62	Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7819-7824.	7.1	432
63	Agrobacterium Germ-Line Transformation: Transformation of Arabidopsis without Tissue Culture. , 1998, , 17-30.		30
64	Plant Disease Resistance Genes: Function Meets Structure. Plant Cell, 1996, 8, 1757.	6.6	93
65	Identification and Map Location of <i>TTR1,</i> a Single Locus in <i>Arabidopsis thaliana</i> that Confers Tolerance to Tobacco Ringspot Nepovirus. Molecular Plant-Microbe Interactions, 1996, 9, 729.	2.6	40
66	RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science, 1994, 265, 1856-1860.	12.6	929
67	Genetic Analysis of Bacterial Disease Resistance in Arabidopsis and Cloning of the RPS2 Resistance Gene. Current Plant Science and Biotechnology in Agriculture, 1994, , 283-288.	0.0	0
68	Identification of a disease resistance locus in Arabidopsis that is functionally homologous to the RPG1 locus of soybean. Plant Journal, 1993, 4, 813-820.	5.7	92
69	RPS2, an Arabidopsis Disease Resistance Locus Specifying Recognition of Pseudomonas syringae Strains Expressing the Avirulence Gene avrRpt2. Plant Cell, 1993, 5, 865.	6.6	5
70	RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2 Plant Cell, 1993, 5, 865-875.	6.6	303
71	Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. Journal of Bacteriology, 1993, 175, 4859-4869.	2.2	196
72	Disease Development in Ethylene-Insensitive <i>Arabidopsis thaliana</i> Infected with Virulent and Avirulent <i>Pseudomonas</i> and <i>Xanthomonas</i> Pathogens. Molecular Plant-Microbe Interactions, 1992, 5, 372.	2.6	252

Andrew F Bent

#	Article	IF	CITATIONS
73	Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean Plant Cell, 1991, 3, 49-59.	6.6	632
74	Arabidopsis as a Model System for Studying Plant Disease Resistance Mechanisms. Annals of the New York Academy of Sciences, 1991, 646, 228-230.	3.8	0
75	Identification of Pseudomonas syringae Pathogens of Arabidopsis and a Bacterial Locus Determining Avirulence on Both Arabidopsis and Soybean. Plant Cell, 1991, 3, 49.	6.6	137
76	Rhizobium meliloti suhR suppresses the phenotype of an Escherichia coli RNA polymerase sigma 32 mutant. Journal of Bacteriology, 1990, 172, 3559-3568.	2.2	1
77	Induction of Lactate Dehydrogenase Isozymes by Oxygen Deficit in Barley Root Tissue. Plant Physiology, 1986, 82, 658-663.	4.8	123