Joohyung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708843/publications.pdf

Version: 2024-02-01

687363 477307 33 852 13 29 citations h-index g-index papers 33 33 33 1093 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distributed Energy Trading in Microgrids: A Game-Theoretic Model and Its Equilibrium Analysis. IEEE Transactions on Industrial Electronics, 2015, 62, 3524-3533.	7.9	310
2	Deep Learning Based Pilot Allocation Scheme (DL-PAS) for 5G Massive MIMO System. IEEE Communications Letters, 2018, 22, 828-831.	4.1	84
3	Three Dynamic Pricing Schemes for Resource Allocation of Edge Computing for IoT Environment. IEEE Internet of Things Journal, 2020, 7, 4292-4303.	8.7	54
4	Learning-Based Adaptive Imputation Methodwith kNN Algorithm for Missing Power Data. Energies, 2017, 10, 1668.	3.1	46
5	Event-Driven Energy Trading System in Microgrids: Aperiodic Market Model Analysis With a Game Theoretic Approach. IEEE Access, 2017, 5, 26291-26302.	4.2	37
6	Battery-Wear-Model-Based Energy Trading in Electric Vehicles: A Naive Auction Model and a Market Analysis. IEEE Transactions on Industrial Informatics, 2019, 15, 4140-4151.	11.3	32
7	Market Analysis of Distributed Learning Resource Management for Internet of Things: A Game-Theoretic Approach. IEEE Internet of Things Journal, 2020, 7, 8430-8439.	8.7	29
8	Competitive Partial Computation Offloading for Maximizing Energy Efficiency in Mobile Cloud Computing. IEEE Access, 2018, 6, 899-912.	4.2	25
9	Novel QoS-Guaranteed Orchestration Scheme for Energy-Efficient Mobile Augmented Reality Applications in Multi-Access Edge Computing. IEEE Transactions on Vehicular Technology, 2020, 69, 13631-13645.	6.3	19
10	Three Hierarchical Levels of Big-Data Market Model Over Multiple Data Sources for Internet of Things. IEEE Access, 2018, 6, 31269-31280.	4.2	17
11	Short-Term Electrical Load Forecasting With Multidimensional Feature Extraction. IEEE Transactions on Smart Grid, 2022, 13, 2999-3013.	9.0	17
12	A Novel Resolution and Power Control Scheme for Energy-Efficient Mobile Augmented Reality Applications in Mobile Edge Computing. IEEE Wireless Communications Letters, 2020, 9, 750-754.	5.0	15
13	A Novel Fair and Scalable Relay Control Scheme for Internet of Things in LoRa-Based Low-Power Wide-Area Networks. IEEE Internet of Things Journal, 2021, 8, 5985-6001.	8.7	15
14	A Novel Joint Mobile Cache and Power Management Scheme for Energy-Efficient Mobile Augmented Reality Service in Mobile Edge Computing. IEEE Wireless Communications Letters, 2021, 10, 1061-1065.	5.0	15
15	Load Profile Extraction by Mean-Shift Clustering with Sample Pearson Correlation Coefficient Distance. Energies, 2018, 11, 2397.	3.1	12
16	A Multivariate-Time-Series-Prediction-Based Adaptive Data Transmission Period Control Algorithm for loT Networks. IEEE Internet of Things Journal, 2022, 9, 419-436.	8.7	12
17	Energy Trading System in Microgrids With Future Forecasting and Forecasting Errors. IEEE Access, 2018, 6, 44094-44106.	4.2	11
18	Incentive-Based Coded Distributed Computing Management for Latency Reduction in IoT Services—A Game Theoretic Approach. IEEE Internet of Things Journal, 2021, 8, 8259-8278.	8.7	11

#	Article	IF	CITATIONS
19	A Novel Joint Dataset and Computation Management Scheme for Energy-Efficient Federated Learning in Mobile Edge Computing. IEEE Wireless Communications Letters, 2022, $11,898-902$.	5.0	11
20	Power Efficient Clustering Scheme for 5G Mobile Edge Computing Environment. Mobile Networks and Applications, 2019, 24, 643-652.	3.3	10
21	Social-viewport adaptive caching scheme with clustering for virtual reality streaming in an edge computing platform. Future Generation Computer Systems, 2020, 108, 424-431.	7.5	10
22	Modeling MPTCP Performance. IEEE Communications Letters, 2019, 23, 616-619.	4.1	9
23	Joint Demand Response and Energy Trading for Electric Vehicles in Off-Grid System. IEEE Access, 2020, 8, 130576-130587.	4.2	9
24	Power Scheduling Scheme for a Charging Facility Considering the Satisfaction of Electric Vehicle Users. IEEE Access, 2022, 10, 25153-25164.	4.2	8
25	A Novel Edge-Cloud Interworking Framework in the Video Analytics of the Internet of Things. IEEE Communications Letters, 2020, 24, 178-182.	4.1	7
26	A Novel Deep Learning-based IoT Device Transmission Interval Management Scheme for Enhanced Scalability in LoRa Networks. IEEE Wireless Communications Letters, 2021, , 1-1.	5.0	7
27	EggBlock: Design and Implementation of Solar Energy Generation and Trading Platform in Edge-Based IoT Systems with Blockchain. Sensors, 2022, 22, 2410.	3.8	5
28	Video analytics-based real-time intelligent crossing detection system (RICDS): Killer app for edge computing. Future Generation Computer Systems, 2022, 133, 84-94.	7.5	5
29	A Novel Joint Dataset and Incentive Management Mechanism for Federated Learning Over MEC. IEEE Access, 2022, 10, 30026-30038.	4.2	3
30	A Sustainable Business Model for a Neutral Host Supporting 5G and beyond (5GB) Ultra-Dense Networks: Challenges, Directions, and Architecture. Sensors, 2022, 22, 5215.	3.8	3
31	An adaptive reporting frequency control scheme for energy saving on Wireless Sensor Networks. , 2014, , .		2
32	AdaMM: Adaptive Object Movement and Motion Tracking in Hierarchical Edge Computing System. Sensors, 2021, 21, 4089.	3.8	2
33	Utilizing Hidden Observations to Enhance the Performance of the Trained Agent. IEEE Robotics and Automation Letters, 2022, 7, 7858-7864.	5.1	0