## Chitra Subramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708432/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Identification of Structural transitions in bacterial fatty acid binding proteins that permit ligand entry and exit at membranes. Journal of Biological Chemistry, 2022, , 101676.                                  | 3.4  | 7         |
| 2  | Proton magnetic resonance spectroscopy detects cerebral metabolic derangement in a mouse model of brain coenzyme a deficiency. Journal of Translational Medicine, 2022, 20, 103.                                    | 4.4  | 3         |
| 3  | Domain architecture and catalysis of the Staphylococcus aureus fatty acid kinase. Journal of<br>Biological Chemistry, 2022, 298, 101993.                                                                            | 3.4  | 6         |
| 4  | Pantothenate kinase activation relieves coenzyme A sequestration and improves mitochondrial function in mice with propionic acidemia. Science Translational Medicine, 2021, 13, eabf5965.                           | 12.4 | 12        |
| 5  | Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis<br>in Proteobacteria. Journal of Biological Chemistry, 2021, 297, 101434.                                    | 3.4  | 15        |
| 6  | LipE guided discovery of isopropylphenyl pyridazines as pantothenate kinase modulators. Bioorganic and Medicinal Chemistry, 2021, 52, 116504.                                                                       | 3.0  | 3         |
| 7  | A pantothenate kinase-deficient mouse model reveals a gene expression program associated with brain<br>coenzyme a reduction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165663.        | 3.8  | 25        |
| 8  | Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site. MBio, 2020, 11, .                                                                                                                       | 4.1  | 26        |
| 9  | Quantification of Coenzyme A in Cells and Tissues. Journal of Visualized Experiments, 2019, , .                                                                                                                     | 0.3  | 7         |
| 10 | Oleate hydratase from Staphylococcus aureus protects against palmitoleic acid, the major<br>antimicrobial fatty acid produced by mammalian skin. Journal of Biological Chemistry, 2019, 294,<br>9285-9294.          | 3.4  | 33        |
| 11 | Human pantothenate kinase 4 is a pseudoâ€pantothenate kinase. Protein Science, 2019, 28, 1031-1047.                                                                                                                 | 7.6  | 29        |
| 12 | Acyl-chain selectivity and physiological roles of Staphylococcus aureus fatty acid–binding proteins.<br>Journal of Biological Chemistry, 2019, 294, 38-49.                                                          | 3.4  | 25        |
| 13 | A therapeutic approach to pantothenate kinase associated neurodegeneration. Nature<br>Communications, 2018, 9, 4399.                                                                                                | 12.8 | 65        |
| 14 | T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use<br>Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions. Journal of Biological Chemistry, 2017,<br>292, 15-30. | 3.4  | 52        |
| 15 | Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor<br>Expression in <i>Staphylococcus aureus</i> . MBio, 2017, 8, .                                                       | 4.1  | 31        |
| 16 | Functional Analysis of Semi-conserved Transit Peptide Motifs and Mechanistic Implications in Precursor Targeting and Recognition. Molecular Plant, 2016, 9, 1286-1301.                                              | 8.3  | 42        |
| 17 | Allosteric Regulation of Mammalian Pantothenate Kinase. Journal of Biological Chemistry, 2016, 291, 22302-22314.                                                                                                    | 3.4  | 29        |
| 18 | Incorporation of extracellular fatty acids by a fatty acid kinaseâ€dependent pathway in<br><scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2014, 92, 234-245.                             | 2.5  | 90        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by<br><i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States<br>of America, 2014, 111, 10532-10537.              | 7.1  | 141       |
| 20 | Cancer-associated Isocitrate Dehydrogenase Mutations Inactivate NADPH-dependent Reductive<br>Carboxylation. Journal of Biological Chemistry, 2012, 287, 14615-14620.                                                                                            | 3.4  | 140       |
| 21 | Sustained Generation of Nitric Oxide and Control of Mycobacterial Infection Requires<br>Argininosuccinate Synthase 1. Cell Host and Microbe, 2012, 12, 313-323.                                                                                                 | 11.0 | 154       |
| 22 | A σ <sup>W</sup> â€dependent stress response in <i>Bacillus subtilis</i> that reduces membrane fluidity.<br>Molecular Microbiology, 2011, 81, 69-79.                                                                                                            | 2.5  | 64        |
| 23 | Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis<br>inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108,<br>15378-15383.                               | 7.1  | 178       |
| 24 | Structural basis for the transcriptional regulation of membrane lipid homeostasis. Nature Structural and Molecular Biology, 2010, 17, 971-975.                                                                                                                  | 8.2  | 79        |
| 25 | DesT Coordinates the Expression of Anaerobic and Aerobic Pathways for Unsaturated Fatty Acid<br>Biosynthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 2010, 192, 280-285.                                                                            | 2.2  | 28        |
| 26 | FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in <i>Listeria monocytogenes</i> . FEMS Microbiology Letters, 2009, 301, 188-192.                                                                               | 1.8  | 65        |
| 27 | Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and<br>mammalian cells and tissues. Proceedings of the National Academy of Sciences of the United States of<br>America, 2007, 104, 10264-10269.                     | 7.1  | 130       |
| 28 | A suite of tools and application notes forin vivoprotein interaction assays using bioluminescence resonance energy transfer (BRET). Plant Journal, 2006, 48, 138-152.                                                                                           | 5.7  | 71        |
| 29 | In Vivo Detection of Protein–Protein Interaction in Plant Cells Using BRET. , 2004, 284, 271-286.                                                                                                                                                               |      | 27        |
| 30 | The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: Mutational analysis by bioluminescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6798-6802. | 7.1  | 119       |
| 31 | Technical Advance: Cytometric analysis of an epitope-tagged transit peptide bound to the chloroplast translocation apparatus. Plant Journal, 2001, 25, 349-363.                                                                                                 | 5.7  | 6         |
| 32 | Identification of a Hsp70 Recognition Domain within the Rubisco Small Subunit Transit Peptide. Plant<br>Physiology, 2000, 122, 1289-1300.                                                                                                                       | 4.8  | 108       |