
Dennis Svatunek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a ¹⁸ F‣abeled Tetrazine with Favorable Pharmacokinetics for Bioorthogonal PET Imaging. Angewandte Chemie - International Edition, 2014, 53, 9655-9659.	7.2	108
2	Design, Synthesis, and Evaluation of a Low-Molecular-Weight ¹¹ C-Labeled Tetrazine for Pretargeted PET Imaging Applying Bioorthogonal in Vivo Click Chemistry. Bioconjugate Chemistry, 2016, 27, 1707-1712.	1.8	73
3	Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. Angewandte Chemie - International Edition, 2019, 58, 9043-9048.	7.2	67
4	Conformationally Strained <i>trans-</i> Cyclooctene (sTCO) Enables the Rapid Construction of ¹⁸ F-PET Probes via Tetrazine Ligation. Theranostics, 2016, 6, 887-895.	4.6	56
5	Practical and Efficient Large-Scale Preparation of Dimethyldioxirane. Organic Process Research and Development, 2013, 17, 313-316.	1.3	53
6	<i>Trans</i> -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano, 2020, 14, 568-584.	7.3	50
7	Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted <i>In Vivo</i> Chemistry. ACS Pharmacology and Translational Science, 2021, 4, 824-833.	2.5	45
8	Chemoselectivity of Tertiary Azides in Strainâ€Promoted Alkyneâ€Azide Cycloadditions. Chemistry - A European Journal, 2019, 25, 754-758.	1.7	43
9	Isonitrile-responsive and bioorthogonally removable tetrazine protecting groups. Chemical Science, 2020, 11, 169-179.	3.7	41
10	Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off. Journal of the American Chemical Society, 2022, 144, 8171-8177.	6.6	38
11	Elucidating the Trends in Reactivity of Azaâ€1,3â€Dipolar Cycloadditions. European Journal of Organic Chemistry, 2019, 2019, 378-386.	1.2	37
12	Direct Cu-mediated aromatic ¹⁸ F-labeling of highly reactive tetrazines for pretargeted bioorthogonal PET imaging. Chemical Science, 2021, 12, 11668-11675.	3.7	36
13	autoDIAS: a python tool for an automated distortion/interaction activation strain analysis. Journal of Computational Chemistry, 2019, 40, 2509-2515.	1.5	28
14	Tetrazine- and <i>trans</i> -cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polymer Chemistry, 2020, 11, 4396-4407.	1.9	25
15	Origins of <i>Endo</i> Selectivity in Diels–Alder Reactions of Cyclic Allene Dienophiles. Angewandte Chemie - International Edition, 2021, 60, 14989-14997.	7.2	24
16	Factors Controlling the Diels–Alder Reactivity of Heteroâ€1,3â€Butadienes. ChemistryOpen, 2018, 7, 995-1004.	0.9	22
17	Efficient low-cost preparation ofÂtrans-cyclooctenes using a simplified flow setup for photoisomerization. Monatshefte Für Chemie, 2016, 147, 579-585.	0.9	17
18	How the Lewis Base F [–] Catalyzes the 1,3-Dipolar Cycloaddition between Carbon Dioxide and Nitrilimines. Journal of Organic Chemistry, 2021, 86, 4320-4325.	1.7	17

DENNIS SVATUNEK

#	Article	IF	CITATIONS
19	Secondary Orbital Interactions Enhance the Reactivity of Alkynes in Diels–Alder Cycloadditions. Journal of the American Chemical Society, 2019, 141, 2224-2227.	6.6	16
20	Synthesis of zearalenone-16-β,D-glucoside and zearalenone-16-sulfate: A tale of protecting resorcylic acid lactones for regiocontrolled conjugation. Beilstein Journal of Organic Chemistry, 2014, 10, 1129-1134.	1.3	15
21	Concerted [4 + 2] and Stepwise (2 + 2) Cycloadditions of Tetrafluoroethylene with Butadiene: DFT and DLPNO-UCCSD(T) Explorations. Journal of Organic Chemistry, 2020, 85, 3858-3864.	1.7	15
22	A computational model to predict the Diels–Alder reactivity of aryl/alkyl-substituted tetrazines. Monatshefte Für Chemie, 2018, 149, 833-837.	0.9	14
23	[18F]Fluoroalkyl azides for rapid radiolabeling and (Re)investigation of their potential towards in vivo click chemistry. Organic and Biomolecular Chemistry, 2017, 15, 5976-5982.	1.5	13
24	Acylation-Mediated â€~Kinetic Turn-On' of 3-Amino-1,2,4,5-tetrazines. Synlett, 2018, 29, 1297-1302.	1.0	13
25	Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles. Angewandte Chemie, 2019, 131, 9141-9146.	1.6	12
26	Computational Exploration of Ambiphilic Reactivity of Azides and Sustmann's Paradigmatic Parabola. Journal of Organic Chemistry, 2021, 86, 5792-5804.	1.7	11
27	Origin of Increased Reactivity in Rhenium-Mediated Cycloadditions of Tetrazines. Journal of Organic Chemistry, 2021, 86, 13129-13133.	1.7	11
28	Synergistic Experimental and Computational Investigation of the Bioorthogonal Reactivity of Substituted Aryltetrazines. Bioconjugate Chemistry, 2022, 33, 608-624.	1.8	10
29	HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules, 2019, 20, 3786-3797.	2.6	9
30	2- <i>O</i> -Benzyloxycarbonyl protected glycosyl donors: a revival of carbonate-mediated anchimeric assistance for diastereoselective glycosylation. Chemical Communications, 2019, 55, 12543-12546.	2.2	9
31	Mechanistic Insights into the Reaction of Amidines with 1,2,3-Triazines and 1,2,3,5-Tetrazines. Journal of the American Chemical Society, 2022, 144, 10921-10928.	6.6	9
32	Experimental and theoretical study of the excited-state tautomerism of 6-azauracil in water surroundings. Chemical Physics, 2018, 515, 663-671.	0.9	8
33	Computational generation of an annotated gigalibrary of synthesizable, composite peptidic macrocycles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24679-24690.	3.3	7
34	The Influence of Substitution on Thiol-Induced Oxanorbornadiene Fragmentation. Organic Letters, 2021, 23, 3751-3754.	2.4	6
35	Live Monitoring of Strainâ€Promoted Azide Alkyne Cycloadditions in Complex Reaction Environments by Inline ATRâ€IR Spectroscopy. Chemistry - A European Journal, 2020, 26, 9851-9854.	1.7	5
36	Origins of Endo Selectivity in Diels–Alder Reactions of Cyclic Allene Dienophiles. Angewandte Chemie, 2021, 133, 15116-15124.	1.6	3

DENNIS SVATUNEK

#	Article	IF	CITATIONS
37	Excited-state photocycodimerization of 6-azauracil to oxazetidine cyclodimer: A mechanism elucidation in water surroundings. Journal of Molecular Structure, 2020, 1205, 127571.	1.8	2
38	DFT study of the Lewis acid mediated synthesis of 3-acyltetramic acids. Journal of Molecular Modeling, 2014, 20, 2181.	0.8	1
39	Rücktitelbild: Stable, Reactive, and Orthogonal Tetrazines: Dispersion Forces Promote the Cycloaddition with Isonitriles (Angew. Chem. 27/2019). Angewandte Chemie, 2019, 131, 9390-9390.	1.6	Ο
40	4.3 1,3-Dipolar Cycloadditions of Alkenes. , 2022, , .		0

4