Georgina C Laredo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene. Applied Catalysis A: General, 2001, 207, 103-112.	4.3	124
2	Denitrogenation of middle distillates using adsorbent materials towards ULSD production: A review. Fuel Processing Technology, 2013, 106, 21-32.	7.2	124
3	Nitrogen compounds characterization in atmospheric gas oil and light cycle oil from a blend of Mexican crudes. Fuel, 2002, 81, 1341-1350.	6.4	108
4	Naphthenic acids, total acid number and sulfur content profile characterization in Isthmus and Maya crude oils. Fuel, 2004, 83, 1689-1695.	6.4	77
5	Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene: Part 2. Applied Catalysis A: General, 2003, 243, 207-214.	4.3	68
6	Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide. Fuel, 2014, 138, 118-125.	6.4	66
7	Molecular size evaluation of linear and branched paraffins from the gasoline pool by DFT quantum chemical calculations. Fuel, 2004, 83, 2183-2188.	6.4	57
8	Light Cycle Oil Upgrading to High Quality Fuels and Petrochemicals: A Review. Industrial & Engineering Chemistry Research, 2018, 57, 7315-7321.	3.7	53
9	Inhibition effects observed between dibenzothiophene and carbazole during the hydrotreating process. Applied Catalysis A: General, 2004, 265, 171-183.	4.3	49
10	Light Cycle Oil Upgrading to Benzene, Toluene, and Xylenes by Hydrocracking: Studies Using Model Mixtures. Industrial & Engineering Chemistry Research, 2017, 56, 10939-10948.	3.7	48
11	High quality diesel by hydrotreating of atmospheric gas oil/light cycle oil blends. Fuel, 2004, 83, 1381-1389.	6.4	37
12	Identification of Naphthenic Acids and Other Corrosivity-Related Characteristics in Crude Oil and Vacuum Gas Oils from a Mexican Refinery. Energy & Fuels, 2004, 18, 1687-1694.	5.1	34
13	Comparison of the metal–organic framework MIL-101 (Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks. Fuel, 2016, 180, 284-291.	6.4	33
14	Synthesis of ionic liquids and their use for extracting nitrogen compounds from gas oil feeds towards diesel fuel production. Fuel Processing Technology, 2015, 130, 38-45.	7.2	31
15	Effect of nitrogen compounds in the hydrodesulfurization of straight-run gas oil using a CoMoP/g-Al2O3 catalyst. Fuel, 2014, 138, 98-103.	6.4	28
16	Self-inhibition observed during indole and o-ethylaniline hydrogenation in the presence of dibenzothiophene. Applied Catalysis A: General, 2003, 242, 311-320.	4.3	27
17	Direct neural network modeling for separation of linear and branched paraffins by adsorption process for gasoline octane number improvement. Fuel, 2014, 124, 158-167.	6.4	26
18	Benzene reduction in gasoline by alkylation with olefins: Comparison of Beta and MCM-22 catalysts. Applied Catalysis A: General, 2012, 413-414, 140-148.	4.3	21

GEORGINA C LAREDO

#	Article	IF	CITATIONS
19	Octane enhancement by the selective separation of branched and linear paraffins in naphthas using a PVDC-PVC carbon molecular sieve. Fuel, 2014, 117, 660-666.	6.4	19
20	Adsorption Equilibrium and Kinetics of Branched Octane Isomers on a Polyvinylidene Chloride-Based Carbon Molecular Sieve. Energy & Fuels, 2008, 22, 2641-2648.	5.1	18
21	Benzene reduction in gasoline by alkylation with propylene over MCM-22 zeolite with a different BrÃ,nsted/Lewis acidity ratios. Applied Catalysis A: General, 2013, 454, 37-45.	4.3	16
22	Adsorption of <i>n</i> -Heptane and 2-Methylheptane in the Gas Phase on Polyvinylidene Chloride-Based Microporous Activated Carbon. Energy & Fuels, 2007, 21, 2929-2934.	5.1	14
23	Benzene reduction in gasoline by alkylation with olefins: Effect of the feedstock on the catalyst deactivation. Applied Catalysis A: General, 2009, 363, 11-18.	4.3	14
24	Gas-phase diffusion of linear and multi-branched alkanes on a carbon molecular sieve by the ZLC method. Separation and Purification Technology, 2013, 103, 36-42.	7.9	13
25	Effect of the catalyst in the BTX production by hydrocracking of light cycle oil. Applied Petrochemical Research, 2021, 11, 19-38.	1.3	13
26	Benzene reduction in gasoline by alkylation with olefins: Effect of the experimental conditions on the product selectivity. Applied Catalysis A: General, 2010, 384, 115-121.	4.3	11
27	Effect of the catalytic system and operating conditions on BTX formation using tetralin as a model molecule. Applied Petrochemical Research, 2019, 9, 185-198.	1.3	11
28	Benzene reduction in gasoline by olefin alkylation: Effect of the catalyst on a C6-reformate heart-cut. Applied Catalysis A: General, 2009, 363, 19-26.	4.3	10
29	Dual-site Langmuir modeling of the liquid phase adsorption of linear and branched paraffins onto a PVDC carbon molecular sieve. Fuel, 2012, 102, 404-413.	6.4	9
30	Benzene reduction in gasoline range streams by adsorption processes using a PVDC–PVC carbon molecular sieve. Fuel, 2014, 135, 459-467.	6.4	8
31	Effect of the experimental conditions on BTX formation from hydrotreated light cycle oil. Applied Petrochemical Research, 2020, 10, 21-34.	1.3	8
32	Kinetics of hydrodesulfurization of dimethyldibenzothiophenes in a gas oil narrow-cut fraction and solvent effects. Applied Catalysis A: General, 2003, 252, 295-304.	4.3	7
33	Comparison of different molecular sieves for the liquid phase separation of linear and branched alkanes. Fuel Processing Technology, 2014, 124, 258-266.	7.2	5
34	Homogeneous catalyst for in-situ hydrotreating of heavy oils. Applied Catalysis A: General, 2019, 577, 99-106.	4.3	5
35	Selective hydrogenation of light cycle oil for BTX and gasoline production purposes. International Journal of Chemical Reactor Engineering, 2022, 20, 69-82.	1.1	5
36	Alternate use of heavy hydrotreatment and visbreaker naphthas by incorporation into diesel. Fuel Processing Technology, 2007, 88, 897-903.	7.2	4

#	Article	IF	CITATIONS
37	Adsorption of nitrogen compounds from diesel fuels over alumina-based adsorbent towards ULSD production. Petroleum Science and Technology, 2017, 35, 392-398.	1.5	3
38	Nitrogen compounds removal from oil-derived middle distillates by MIL-101(Cr) and its impact on ULSD production by hydrotreating. Oil and Gas Science and Technology, 2021, 76, 56.	1.4	3
39	Effect of the chemical composition of six hydrotreated light cycle oils for benzene, toluene, ethylbenzene, and xylene production by a hydrocracking process. Applied Petrochemical Research, 2021, 11, 249-263.	1.3	2
40	Upgrading of light cycle oil for ultra low sulphur diesel production by a solvent extraction procedure. International Journal of Oil, Gas and Coal Technology, 2019, 22, 315.	0.2	0