Alan C. Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708056/publications.pdf

Version: 2024-02-01

147801 182427 7,059 52 31 51 h-index citations g-index papers 52 52 52 9517 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanomedicine: current status and future prospects. FASEB Journal, 2005, 19, 311-330.	0.5	1,732
2	A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Molecular Therapy, 2005, 11, 990-995.	8.2	967
3	Factors Controlling Nanoparticle Pharmacokinetics: An Integrated Analysis and Perspective. Annual Review of Pharmacology and Toxicology, 2012, 52, 481-503.	9.4	477
4	Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicityâ~†. Advanced Drug Delivery Reviews, 2006, 58, 1523-1531.	13.7	424
5	Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends in Biotechnology, 2000, 18, 412-420.	9.3	351
6	Distinct Polymer Architecture Mediates Switching of Complement Activation Pathways at the Nanosphereâ [^] 'Serum Interface: Implications for Stealth Nanoparticle Engineering. ACS Nano, 2010, 4, 6629-6638.	14.6	263
7	Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Molecular Immunology, 2008, 46, 225-232.	2.2	231
8	Material properties in complement activation. Advanced Drug Delivery Reviews, 2011, 63, 1000-1007.	13.7	230
9	Polycation cytotoxicity: a delicate matter for nucleic acid therapyâ€"focus on polyethylenimine. Soft Matter, 2010, 6, 4001.	2.7	193
10	Complement activation cascade triggered by PEG–PL engineered nanomedicines and carbon nanotubes: The challenges ahead. Journal of Controlled Release, 2010, 146, 175-181.	9.9	157
11	Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nature Nanotechnology, 2017, 12, 589-594.	31.5	154
12	Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups., 2001, 18, 1-8.		133
13	PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Letters, 2002, 532, 338-344.	2.8	131
14	Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Molecular Immunology, 2008, 45, 3797-3803.	2.2	122
15	Cationic carriers of genetic material and cell death: A mitochondrial tale. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1203-1209.	1.0	117
16	Single-Walled Carbon Nanotube Surface Control of Complement Recognition and Activation. ACS Nano, 2013, 7, 1108-1119.	14.6	110
17	Low and high molecular weight poly(<scp>l</scp> â€lysine)s/poly(<scp>l</scp> â€lysine)â€"DNA complexes initiate mitochondrialâ€mediated apoptosis differently. FEBS Letters, 2005, 579, 6191-6198.	2.8	109
18	Therapeutic synthetic polymers: a game of Russian roulette?. Drug Discovery Today, 2002, 7, 998-1001.	6.4	80

#	Article	IF	CITATIONS
19	Complement: Alive and Kicking Nanomedicines. Journal of Biomedical Nanotechnology, 2009, 5, 364-372.	1.1	71
20	Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts. Journal of Innate Immunity, 2012, 4, 509-528.	3.8	66
21	Activation of the Human Complement System by Cholesterol-Rich and PEGylated Liposomes—Modulation of Cholesterol-Rich Liposome-Mediated Complement Activation by Elevated Serum LDL and HDL Levels. Journal of Liposome Research, 2006, 16, 167-174.	3.3	61
22	Concentration Dependent Structural Ordering of Poloxamine 908 on Polystyrene Nanoparticles and Their Modulatory Role on Complement Consumption. Journal of Nanoscience and Nanotechnology, 2006, 6, 3126-3133.	0.9	58
23	Cellular Distribution of Nonionic Micelles. Science, 2004, 303, 626-628.	12.6	57
24	Smart polymers in drug delivery: a biological perspective. Polymer Chemistry, 2017, 8, 41-51.	3.9	55
25	The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 581-592.	2.5	47
26	Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity: Implications for nucleic acid delivery and gene therapy. Mitochondrion, 2012, 12, 162-168.	3.4	46
27	Transformation of 5-ene steroids by the fungus Aspergillus tamarii KITA: Mixed molecular fate in lactonization and hydroxylation pathways with identification of a putative 3β-hydroxy-steroid dehydrogenase∬"5–Δ4 isomerase pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids. 2009. 1791. 110-117.	2.4	45
28	Genomic perspectives in inter-individual adverse responses following nanomedicine administration: The way forward. Advanced Drug Delivery Reviews, 2012, 64, 1385-1393.	13.7	44
29	Complement monitoring of Pluronic 127 gel and micelles: Suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100. Journal of Controlled Release, 2013, 170, 167-174.	9.9	43
30	Complement activation by PEG-functionalized multi-walled carbon nanotubes is independent of PEG molecular mass and surface density. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 469-473.	3.3	38
31	Ordering of Binary Polymeric Nanoparticles on Hydrophobic Surfaces Assembled from Low Volume Fraction Dispersions. Journal of the American Chemical Society, 2007, 129, 13390-13391.	13.7	36
32	Polymeric particulate technologies for oral drug delivery and targeting: A pathophysiological perspective. Maturitas, 2012, 73, 5-18.	2.4	34
33	Real-time evidence of surface modification at polystyrene lattices by poloxamine 908 in the presence of serum: in vivo conversion of macrophage-prone nanoparticles to stealth entities by poloxamine 908. FEBS Letters, 2003, 547, 177-182.	2.8	33
34	Application of the Quartz Crystal Microbalance to Nanomedicine. Journal of Biomedical Nanotechnology, 2009, 5, 669-675.	1,1	30
35	Novel quartz crystal microbalance based biosensor for detection of oral epithelial cell–microparticle interaction in real-time. Biosensors and Bioelectronics, 2008, 23, 1259-1265.	10.1	28
36	An unusual ringâ€"A opening and other reactions in steroid transformation by the thermophilic fungus Myceliophthora thermophila. Journal of Steroid Biochemistry and Molecular Biology, 2009, 116, 171-177.	2.5	28

3

#	Article	IF	CITATIONS
37	Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. Journal of Steroid Biochemistry and Molecular Biology, 2008, 108, 155-163.	2.5	26
38	An efficient one-pot synthesis generating 4-ene-3,6-dione functionalised steroids from steroidal 5-en-3 $\hat{1}^2$ -ols using a modified Jones oxidation methodology. Steroids, 2006, 71, 30-33.	1.8	25
39	Ring-B functionalized androst-4-en-3-ones and ring-C substituted pregn-4-en-3-ones undergo differential transformation in Aspergillus tamarii KITA: Ring-A transformation with all C-6 substituted steroids and ring-D transformation with C-11 substituents. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids. 2006, 1761, 360-366.	2.4	24
40	Complement system and the brain: Selected pathologies and avenues toward engineering of neurological nanomedicines. Journal of Controlled Release, 2012, 161, 283-289.	9.9	24
41	Modification of the Stewart biphasic colorimetric assay for stable and accurate quantitatitive determination of Pluronic and Tetronic block copolymers for application in biological systems. Analytical Biochemistry, 2007, 361, 287-293.	2.4	21
42	Transformation of some 3α-substituted steroids by Aspergillus tamarii KITA reveals stereochemical restriction of steroid binding orientation in the minor hydroxylation pathway. Journal of Steroid Biochemistry and Molecular Biology, 2010, 118, 171-176.	2.5	19
43	Platelet mimicry: The emperor's new clothes?. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 245-248.	3.3	19
44	Distinct metabolic handling of $3\hat{l}^2$ -hydroxy-17a-oxa-D-homo- $5\hat{l}_\pm$ -androstan-17-one by the filamentous fungus Aspergillus tamarii KITA: Evidence in support of steroid/hydroxylase binding hypothesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1254-1261.	2.4	17
45	AFM visualization of sub-50 nm polyplex disposition to the nuclear pore complex without compromising the integrity of the nuclear envelope. Journal of Controlled Release, 2016, 244, 24-29.	9.9	16
46	Fate of novel Quasi reverse steroidal substrates by Aspergillus tamarii KITA: Bypass of lactonisation and an exclusive role for the minor hydroxylation pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1734, 190-197.	2.4	14
47	Volume-Activated Chloride Currents in HeLa Cells are Blocked by Tamoxifen But Not by a Membrane Impermeant Quaternary Analogue. Cellular Physiology and Biochemistry, 2001, 11, 99-104.	1.6	12
48	Transformation of a series of saturated isomeric steroidal diols by Aspergillus tamarii KITA reveals a precise stereochemical requirement for entrance into the lactonization pathway. Journal of Steroid Biochemistry and Molecular Biology, 2010, 122, 352-358.	2.5	12
49	Transformation of structurally diverse steroidal analogues by the fungus Corynespora cassiicola CBS 161.60 results in generation of 8β-monohydroxylated metabolites with evidence in favour of 8β-hydroxylation through inverted binding in the 9α-hydroxylase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids. 2011. 1811. 1054-1061.	2.4	12
50	Surfactant-mediated complement activation in beagle dogs. International Immunopharmacology, 2013, 17, 33-34.	3.8	7
51	Synthetic polymers in 21st century therapeutics: the way forward $\hat{a}-34$. Drug Discovery Today, 2003, 8, 154-156.	6.4	5
52	Quartz Crystal Microbalance Assay of Clinical Calcinosis Samples and Their Synthetic Models Differentiates the Efficacy of Chelation-Based Treatments. ACS Applied Materials & Efficacy of Che	8.0	5