Atsushi Takabayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of photosystem II assembly complexes containing ONE-HELIX PROTEIN1 in Arabidopsis thaliana. Journal of Plant Research, 2022, 135, 361.	2.4	1
2	Letter to the Editor: Weak-Acidic Clear-Native Polyacrylamide Gel Electrophoresis for the Separation of the Intact Forms of Thylakoid Protein Complexes. Plant and Cell Physiology, 2022, 63, 883-885.	3.1	2
3	Unique Peripheral Antennas in the Photosystems of the Streptophyte Alga <i>Mesostigma viride</i> . Plant and Cell Physiology, 2021, 62, 436-446.	3.1	Ο
4	Substitution of Deoxycholate with the Amphiphilic Polymer Amphipol A8-35 Improves the Stability of Large Protein Complexes during Native Electrophoresis. Plant and Cell Physiology, 2021, 62, 348-355.	3.1	3
5	Regulation of excitation energy in Nannochloropsis photosystem II. Photosynthesis Research, 2019, 139, 155-161.	2.9	2
6	Horizontal Transfer of Promiscuous Activity from Nonphotosynthetic Bacteria Contributed to Evolution of Chlorophyll Degradation Pathway. Molecular Biology and Evolution, 2019, 36, 2830-2841.	8.9	8
7	Formation of a PSI–PSII megacomplex containing LHCSR and PsbS in the moss Physcomitrella patens. Journal of Plant Research, 2019, 132, 867-880.	2.4	14
8	The PSI–PSII Megacomplex in Green Plants. Plant and Cell Physiology, 2019, 60, 1098-1108.	3.1	34
9	Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata. Photosynthesis Research, 2018, 136, 49-61.	2.9	13
10	PCoM-DB Update: A Protein Co-Migration Database for Photosynthetic Organisms. Plant and Cell Physiology, 2017, 58, pcw219.	3.1	18
11	Complete Chloroplast Genome Sequence of the Early Diverging Green Alga <i>Palmophyllum crassum</i> . Genome Announcements, 2017, 5, .	0.8	2
12	Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase. Faraday Discussions, 2017, 198, 37-58.	3.2	29
13	Deficiency of the Stroma-Lamellar Protein LIL8/PSB33 Affects Energy Transfer Around PSI in Arabidopsis. Plant and Cell Physiology, 2017, 58, 2026-2039.	3.1	16
14	Comprehensive detection of protein complexes using blue-native (BN)-PAGE. Denki Eido, 2017, 61, 111-114.	0.0	1
15	Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems. Plant and Cell Physiology, 2016, 57, 1231-1243.	3.1	36
16	Accumulation of the components of cyclic electron flow around photosystem I in C4 plants, with respect to the requirements for ATP. Photosynthesis Research, 2016, 129, 261-277.	2.9	31
17	NDH-Mediated Cyclic Electron Flow Around Photosystem I is Crucial for C ₄ Photosynthesis. Plant and Cell Physiology, 2016, 57, 2020-2028.	3.1	53
18	Direct interaction with ACR11 is necessary for post-transcriptional control of GLU1-encoded ferredoxin-dependent glutamate synthase in leaves. Scientific Reports, 2016, 6, 29668.	3.3	24

Atsushi Takabayashi

#	Article	IF	CITATIONS
19	A megacomplex composed of both photosystem reaction centres in higher plants. Nature Communications, 2015, 6, 6675.	12.8	101
20	Pale-Green Phenotype of atl31 atl6 Double Mutant Leaves Is Caused by Disruption of 5-Aminolevulinic Acid Biosynthesis in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0117662.	2.5	20
21	Functional Analysis of Light-harvesting-like Protein 3 (LIL3) and Its Light-harvesting Chlorophyll-binding Motif in Arabidopsis. Journal of Biological Chemistry, 2014, 289, 987-999.	3.4	38
22	Protein co-migration database (PCoM -DB) for Arabidopsis thylakoids and Synechocystis cells. SpringerPlus, 2013, 2, 148.	1.2	24
23	Evolutionary Changes in Chlorophyllide a Oxygenase (CAO) Structure Contribute to the Acquisition of a New Light-harvesting Complex in Micromonas*. Journal of Biological Chemistry, 2013, 288, 19330-19341.	3.4	28
24	Screening of Novel Subunits of Chloroplastic NAD(P)H Dehydrogenase in Arabidopsis. Advanced Topics in Science and Technology in China, 2013, , 279-281.	0.1	0
25	Identification of the 7-Hydroxymethyl Chlorophyll <i>a</i> Reductase of the Chlorophyll Cycle in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3442-3453.	6.6	155
26	Allocation of Absorbed Light Energy in PSII to Thermal Dissipations in the Presence or Absence of PsbS Subunits of Rice. Plant and Cell Physiology, 2011, 52, 1822-1831.	3.1	23
27	The Oligomeric States of the Photosystems and the Light-Harvesting Complexes in the Chl b-Less Mutant. Plant and Cell Physiology, 2011, 52, 2103-2114.	3.1	37
28	Direct interaction between KaiA and KaiB revealed by a siteâ€directed spin labeling electron spin resonance analysis. Genes To Cells, 2010, 15, 269-280.	1.2	19
29	Three PsbQ-Like Proteins are Required for the Function of the Chloroplast NAD(P)H Dehydrogenase Complex in Arabidopsis. Plant and Cell Physiology, 2010, 51, 866-876.	3.1	70
30	LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16721-16725.	7.1	98
31	Three novel subunits of Arabidopsis chloroplastic NAD(P)H dehydrogenase identified by bioinformatic and reverse genetic approaches. Plant Journal, 2009, 57, 207-219.	5.7	82
32	NDF6: A Thylakoid Protein Specific to Terrestrial Plants is Essential for Activity of Chloroplastic NAD(P)H Dehydrogenase in Arabidopsis. Plant and Cell Physiology, 2008, 49, 1066-1073.	3.1	39
33	A Novel Nuclear-Encoded Protein, NDH-Dependent Cyclic Electron Flow 5, is Essential for the Accumulation of Chloroplast NAD(P)H Dehydrogenase Complexes. Plant and Cell Physiology, 2008, 50, 383-393.	3.1	30
34	Distinct Functions for the Two PsbP-Like Proteins PPL1 and PPL2 in the Chloroplast Thylakoid Lumen of Arabidopsis. Plant Physiology, 2007, 145, 668-679.	4.8	134
35	Chloroplastic NAD(P)H Dehydrogenase in Tobacco Leaves Functions in Alleviation of Oxidative Damage Caused by Temperature Stress A. Plant Physiology, 2006, 141, 465-474.	4.8	221
36	Functional dissection of two Arabidopsis PsbO proteins. FEBS Journal, 2005, 272, 2165-2175.	4.7	80

#	Article	IF	CITATIONS
37	From The Cover: Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16898-16903.	7.1	132
38	Ribosomal RNA processing and an RNase R family member in chloroplasts of Arabidopsis. Plant Molecular Biology, 2004, 55, 595-606.	3.9	42
39	Post-illumination Reduction of the Plastoquinone Pool in Chloroplast Transformants in which Chloroplastic NAD(P)H Dehydrogenase was Inactivated. Bioscience, Biotechnology and Biochemistry, 2002, 66, 2107-2111.	1.3	29
40	Characterization of anArabidopsis thalianamutant with impairedpsbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem II. FEBS Letters, 2002, 523, 138-142.	2.8	74
41	The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Letters, 1999, 457, 5-8.	2.8	210