
Jun Yamasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus. Jacs Au, 2022, 2, 419-427.	7.9	12
2	Ni ₂ P Nanoalloy as an Air‣table and Versatile Hydrogenation Catalyst in Water: Pâ€Alloying Strategy for Designing Smart Catalysts. Chemistry - A European Journal, 2021, 27, 4439-4446.	3.3	18
3	Wave field reconstruction and phase imaging by electron diffractive imaging. Microscopy (Oxford,) Tj ETQq1 1	0.784314 1.5	rgBŢ /Overlo
4	Quasi-static 3D structure of graphene ripple measured using aberration-corrected TEM. Nanoscale, 2021, 13, 5847-5856.	5.6	4
5	Support-Boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol. ACS Sustainable Chemistry and Engineering, 2021, 9, 6347-6354.	6.7	19
6	A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols. Scientific Reports, 2021, 11, 10673.	3.3	10
7	Development of Electron Diffractive Imaging. Vacuum and Surface Science, 2021, 64, 466-471.	0.1	Ο
8	Progress in environmental high-voltage transmission electron microscopy for nanomaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190602.	3.4	6
9	A cobalt phosphide catalyst for the hydrogenation of nitriles. Chemical Science, 2020, 11, 6682-6689.	7.4	66
10	Unique Catalysis of Nickel Phosphide Nanoparticles to Promote the Selective Transformation of Biofuranic Aldehydes into Diketones in Water. ACS Catalysis, 2020, 10, 4261-4267.	11.2	71
11	Precise Measurements of Transmission Attenuation in Mass-Thickness Contrast TEM Images. Microscopy and Microanalysis, 2019, 25, 2418-2419.	0.4	0
12	Phase imaging and atomic-resolution imaging by electron diffractive imaging. Japanese Journal of Applied Physics, 2019, 58, 120502.	1.5	6
13	Empirical determination of transmission attenuation curves in mass–thickness contrast TEM imaging. Ultramicroscopy, 2019, 200, 20-27.	1.9	11
14	Precise method for measuring spatial coherence in TEM beams using Airy diffraction patterns. Microscopy (Oxford, England), 2018, 67, 1-10.	1.5	7
15	B11-O-06Depth-Resolution Imaging of Crystalline Nano Clusters Using Aberration-Corrected TEM. Microscopy (Oxford, England), 2015, 64, i13.1-i13.	1.5	0
16	Influence of Nonlinear Intensity Attenuation in Bright-Field TEM Images on Tomographic Reconstructions of Micron-Scaled Materials. Microscopy and Microanalysis, 2015, 21, 993-994.	0.4	0
17	Depth-resolution imaging of crystalline nanoclusters attached on and embedded in amorphous films using aberration-corrected TEM. Ultramicroscopy, 2015, 151, 224-231.	1.9	13
18	Nonlinear intensity attenuation with increasing thickness and quantitative TEM tomography of micron-sized materials. Microscopy (Oxford, England), 2014, 63, i5.1-i6.	1.5	0

Jun Yamasaki

#	Article	IF	CITATIONS
19	Analysis of nonlinear intensity attenuation in bright-field TEM images for correct 3D reconstruction of the density in micron-sized materials. Microscopy (Oxford, England), 2014, 63, 345-355.	1.5	22
20	Measurement of spatial coherence of electron beams by using a small selected-area aperture. Ultramicroscopy, 2013, 129, 10-17.	1.9	12
21	Estimation of wave fields of incident beams in a transmission electron microscope by using a small selected-area aperture. Journal of Electron Microscopy, 2011, 60, 101-108.	0.9	33
22	Diffractive imaging of the dumbbell structure in silicon by spherical-aberration-corrected electron diffraction. Applied Physics Letters, 2008, 93, 183103.	3.3	54
23	A Practical Solution for Eliminating Artificial Image Contrast in Aberration-Corrected TEM. Microscopy and Microanalysis, 2008, 14, 27-35.	0.4	9
24	Direct Observation of Six-Membered Rings in the Upper and Lower Walls of a Single-Wall Carbon Nanotube by Spherical Aberration-Corrected HRTEM. Nano Letters, 2006, 6, 1778-1783.	9.1	37
25	The first observation of carbon nanotubes by spherical aberration corrected high-resolution transmission electron microscopy. Nanotechnology, 2004, 15, 1779-1784.	2.6	25
26	Quantitative measurement of spatial coherence ofelectron beams emitted from a thermionic electron gun. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 0, , .	1.5	1