
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/770612/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and<br>Neuromelanin-Producing Neurons. Cell Stem Cell, 2016, 19, 248-257.                                                         | 11.1 | 628       |
| 2  | Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nature Protocols, 2010, 5, 1096-1106.                                                                            | 12.0 | 471       |
| 3  | Nanoplasmonic Sensor Detects Preferential Binding of IRSp53 to Negative Membrane Curvature.<br>Frontiers in Chemistry, 2019, 7, 1.                                                                                          | 3.6  | 439       |
| 4  | Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today, 2015, 10, 213-239.                                                                                                                           | 11.9 | 356       |
| 5  | Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and<br>Therapeutic Applications. International Journal of Molecular Sciences, 2018, 19, 1114.                               | 4.1  | 325       |
| 6  | Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Scientific Reports, 2016, 6,<br>31036.                                                                                                             | 3.3  | 270       |
| 7  | Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Scientific Reports, 2019, 9, 6863.                                                                     | 3.3  | 204       |
| 8  | Nanoplasmonic sensors for biointerfacial science. Chemical Society Reviews, 2017, 46, 3615-3660.                                                                                                                            | 38.1 | 195       |
| 9  | High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles. Science<br>Advances, 2016, 2, e1501381.                                                                                        | 10.3 | 191       |
| 10 | Bimodal Tumor-Targeting from Microenvironment Responsive Hyaluronan Layer-by-Layer (LbL)<br>Nanoparticles. ACS Nano, 2014, 8, 8374-8382.                                                                                    | 14.6 | 161       |
| 11 | High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators.<br>Nano Energy, 2017, 36, 38-45.                                                                                            | 16.0 | 160       |
| 12 | Silk fibroin–keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integrative<br>Biology (United Kingdom), 2015, 7, 53-63.                                                                        | 1.3  | 139       |
| 13 | Solvent-Assisted Lipid Bilayer Formation on Silicon Dioxide and Gold. Langmuir, 2014, 30, 10363-10373.                                                                                                                      | 3.5  | 134       |
| 14 | Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels. RSC Advances, 2015, 5, 106094-106097.                                                                   | 3.6  | 118       |
| 15 | Flexible, Grapheneâ€Coated Biocomposite for Highly Sensitive, Realâ€Time Molecular Detection. Advanced<br>Functional Materials, 2016, 26, 8623-8630.                                                                        | 14.9 | 116       |
| 16 | Employing Two Different Quartz Crystal Microbalance Models To Study Changes in Viscoelastic<br>Behavior upon Transformation of Lipid Vesicles to a Bilayer on a Gold Surface. Analytical Chemistry,<br>2007, 79, 7027-7035. | 6.5  | 113       |
| 17 | Employing an Amphipathic Viral Peptide to Create a Lipid Bilayer on Au and TiO <sub>2</sub> . Journal of the American Chemical Society, 2007, 129, 10050-10051.                                                             | 13.7 | 107       |
| 18 | Biotechnology Applications of Tethered Lipid Bilayer Membranes. Materials, 2012, 5, 2637-2657.                                                                                                                              | 2.9  | 101       |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Supported Lipid Bilayer Formation: Beyond Vesicle Fusion. Langmuir, 2020, 36, 1387-1400.                                                                                               | 3.5  | 94        |
| 20 | Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials, 2018, 182, 299-311.                | 11.4 | 93        |
| 21 | Bioinspired Spiky Micromotors Based on Sporopollenin Exine Capsules. Advanced Functional<br>Materials, 2017, 27, 1702338.                                                              | 14.9 | 92        |
| 22 | Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides. Molecules, 2016, 21, 305.                                                                           | 3.8  | 88        |
| 23 | Nanoplasmonic sensors for detecting circulating cancer biomarkers. Advanced Drug Delivery<br>Reviews, 2018, 125, 48-77.                                                                | 13.7 | 88        |
| 24 | Validation of Size Estimation of Nanoparticle Tracking Analysis on Polydisperse Macromolecule<br>Assembly. Scientific Reports, 2019, 9, 2639.                                          | 3.3  | 88        |
| 25 | pH-Driven Assembly of Various Supported Lipid Platforms: A Comparative Study on Silicon Oxide and<br>Titanium Oxide. Langmuir, 2011, 27, 3739-3748.                                    | 3.5  | 83        |
| 26 | Influence of Osmotic Pressure on Adhesion of Lipid Vesicles to Solid Supports. Langmuir, 2013, 29,<br>11375-11384.                                                                     | 3.5  | 81        |
| 27 | Natural Sunflower Pollen as a Drug Delivery Vehicle. Small, 2016, 12, 1167-1173.                                                                                                       | 10.0 | 81        |
| 28 | Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants.<br>Langmuir, 2015, 31, 10223-10232.                                                 | 3.5  | 80        |
| 29 | Temperature-Induced Denaturation of BSA Protein Molecules for Improved Surface Passivation Coatings. ACS Applied Materials & amp; Interfaces, 2018, 10, 32047-32057.                   | 8.0  | 77        |
| 30 | A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone<br>detection. Journal of Materials Chemistry B, 2017, 5, 4019-4024.             | 5.8  | 76        |
| 31 | Grapheneâ€Functionalized Natural Microcapsules: Modular Building Blocks for Ultrahigh Sensitivity<br>Bioelectronic Platforms. Advanced Functional Materials, 2016, 26, 2097-2103.      | 14.9 | 75        |
| 32 | Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anionâ^'Ï€<br>Interactions. Journal of the American Chemical Society, 2017, 139, 7823-7830. | 13.7 | 75        |
| 33 | Plantâ€Based Hollow Microcapsules for Oral Delivery Applications: Toward Optimized Loading and<br>Controlled Release. Advanced Functional Materials, 2017, 27, 1700270.                | 14.9 | 74        |
| 34 | Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nature<br>Materials, 2018, 17, 971-977.                                                     | 27.5 | 74        |
| 35 | Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy. Nano Convergence, 2017, 4, 5.      | 12.1 | 72        |
| 36 | Mechanism of an Amphipathic α-Helical Peptide's Antiviral Activity Involves Size-Dependent Virus<br>Particle Lysis. ACS Chemical Biology, 2009, 4, 1061-1067.                          | 3.4  | 71        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Solvent-assisted preparation of supported lipid bilayers. Nature Protocols, 2019, 14, 2091-2118.                                                                                                                           | 12.0 | 70        |
| 38 | Self-Assembly Formation of Lipid Bilayer Coatings on Bare Aluminum Oxide: Overcoming the Force of<br>Interfacial Water. ACS Applied Materials & Interfaces, 2015, 7, 959-968.                                              | 8.0  | 68        |
| 39 | Actuation and locomotion driven by moisture in paper made with natural pollen. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8711-8718.                                      | 7.1  | 68        |
| 40 | Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly. Materials, 2013, 6, 3294-3308.                                                                                                             | 2.9  | 66        |
| 41 | Solvent-Assisted Lipid Self-Assembly at Hydrophilic Surfaces: Factors Influencing the Formation of Supported Membranes. Langmuir, 2015, 31, 3125-3134.                                                                     | 3.5  | 66        |
| 42 | Microrobots Derived from Variety Plant Pollen Grains for Efficient Environmental Clean Up and as an<br>Anti ancer Drug Carrier. Advanced Functional Materials, 2020, 30, 2000112.                                          | 14.9 | 64        |
| 43 | Transformation of hard pollen into soft matter. Nature Communications, 2020, 11, 1449.                                                                                                                                     | 12.8 | 58        |
| 44 | Plasmonic Nanohole Sensor for Capturing Single Virus‣ike Particles toward Virucidal Drug<br>Evaluation. Small, 2016, 12, 1159-1166.                                                                                        | 10.0 | 57        |
| 45 | Single Vesicle Analysis Reveals Nanoscale Membrane Curvature Selective Pore Formation in Lipid<br>Membranes by an Antiviral α-Helical Peptide. Nano Letters, 2012, 12, 5719-5725.                                          | 9.1  | 56        |
| 46 | Rupture of Lipid Vesicles by a Broad-Spectrum Antiviral Peptide: Influence of Vesicle Size. Journal of<br>Physical Chemistry B, 2013, 117, 16117-16128.                                                                    | 2.6  | 56        |
| 47 | Eco-friendly streamlined process for sporopollenin exine capsule extraction. Scientific Reports, 2016,<br>6, 19960.                                                                                                        | 3.3  | 56        |
| 48 | Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles. Langmuir, 2016, 32, 6486-6495.                                                                                                        | 3.5  | 56        |
| 49 | Extraction of sporopollenin exine capsules from sunflower pollen grains. RSC Advances, 2016, 6, 16533-16539.                                                                                                               | 3.6  | 55        |
| 50 | Comparison of complement activation-related pseudoallergy in miniature and domestic pigs:<br>foundation of a validatable immune toxicity model. Nanomedicine: Nanotechnology, Biology, and<br>Medicine, 2016, 12, 933-943. | 3.3  | 55        |
| 51 | Nanoplasmonic Biosensing for Soft Matter Adsorption: Kinetics of Lipid Vesicle Attachment and Shape<br>Deformation. Langmuir, 2014, 30, 9494-9503.                                                                         | 3.5  | 54        |
| 52 | Formation of Cholesterol-Rich Supported Membranes Using Solvent-Assisted Lipid Self-Assembly.<br>Langmuir, 2014, 30, 13345-13352.                                                                                          | 3.5  | 53        |
| 53 | Identification of a Class of HCV Inhibitors Directed Against the Nonstructural Protein NS4B. Science<br>Translational Medicine, 2010, 2, 15ra6.                                                                            | 12.4 | 52        |
| 54 | Chiral crystallization of aromatic helical foldamers via complementarities in shape and end functionalities. Chemical Science, 2012, 3, 2042.                                                                              | 7.4  | 52        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Contribution of the Hydration Force to Vesicle Adhesion on Titanium Oxide. Langmuir, 2014, 30, 5368-5372.                                                                                                             | 3.5  | 52        |
| 56 | Nanomedicine for Infectious Disease Applications: Innovation towards Broadâ€Spectrum Treatment of Viral Infections. Small, 2016, 12, 1133-1139.                                                                       | 10.0 | 52        |
| 57 | Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures. Langmuir, 2017, 33, 5052-5064.                                                                                                           | 3.5  | 52        |
| 58 | Quantitative Profiling of Nanoscale Liposome Deformation by a Localized Surface Plasmon Resonance<br>Sensor. Analytical Chemistry, 2017, 89, 1102-1109.                                                               | 6.5  | 52        |
| 59 | Type I Collagen-Functionalized Supported Lipid Bilayer as a Cell Culture Platform. Biomacromolecules, 2010, 11, 1231-1240.                                                                                            | 5.4  | 51        |
| 60 | Quartz Crystal Microbalance as a Sensor to Characterize Macromolecular Assembly Dynamics.<br>Journal of Sensors, 2009, 2009, 1-17.                                                                                    | 1.1  | 50        |
| 61 | Fabrication of a Planar Zwitterionic Lipid Bilayer on Titanium Oxide. Langmuir, 2010, 26, 15706-15710.                                                                                                                | 3.5  | 49        |
| 62 | Stealth Immune Properties of Graphene Oxide Enabled by Surface-Bound Complement Factor H. ACS<br>Nano, 2016, 10, 10161-10172.                                                                                         | 14.6 | 49        |
| 63 | Encapsulation and controlled release formulations of 5-fluorouracil from natural Lycopodium clavatum spores. Journal of Industrial and Engineering Chemistry, 2016, 36, 102-108.                                      | 5.8  | 49        |
| 64 | Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking. Physical Chemistry Chemical Physics, 2017, 19, 8854-8865.                | 2.8  | 49        |
| 65 | Interfacial Forces Dictate the Pathway of Phospholipid Vesicle Adsorption onto Silicon Dioxide Surfaces. Langmuir, 2018, 34, 1775-1782.                                                                               | 3.5  | 49        |
| 66 | Vesicle Adhesion and Rupture on Silicon Oxide: Influence of Freeze–Thaw Pretreatment. Langmuir,<br>2014, 30, 2152-2160.                                                                                               | 3.5  | 47        |
| 67 | Modulation of Huh7.5 Spheroid Formation and Functionality Using Modified PEG-Based Hydrogels of Different Stiffness. PLoS ONE, 2015, 10, e0118123.                                                                    | 2.5  | 47        |
| 68 | <i>Lycopodium</i> Spores: A Naturally Manufactured, Superrobust Biomaterial for Drug Delivery.<br>Advanced Functional Materials, 2016, 26, 487-497.                                                                   | 14.9 | 47        |
| 69 | Correlating Membrane Morphological Responses with Micellar Aggregation Behavior of Capric Acid and Monocaprin. Langmuir, 2017, 33, 2750-2759.                                                                         | 3.5  | 47        |
| 70 | Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface<br>Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis. Analytical Chemistry, 2016,<br>88, 12524-12531. | 6.5  | 46        |
| 71 | Nanoplasmonic ruler to measure lipid vesicle deformation. Chemical Communications, 2016, 52, 76-79.                                                                                                                   | 4.1  | 46        |
| 72 | Stopping Membrane-Enveloped Viruses with Nanotechnology Strategies: Toward Antiviral Drug<br>Development and Pandemic Preparedness. ACS Nano, 2021, 15, 125-148.                                                      | 14.6 | 46        |

Ναμ-Joon Cho

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Alpha-Helical Peptide-Induced Vesicle Rupture Revealing New Insight into the Vesicle Fusion Process As<br>Monitored <i>in Situ</i> by Quartz Crystal Microbalance-Dissipation and Reflectometry. Analytical<br>Chemistry, 2009, 81, 4752-4761. | 6.5  | 45        |
| 74 | Improving Taxane-Based Chemotherapy in Castration-Resistant Prostate Cancer. Trends in Pharmacological Sciences, 2016, 37, 451-462.                                                                                                            | 8.7  | 45        |
| 75 | Contribution of Temperature to Deformation of Adsorbed Vesicles Studied by Nanoplasmonic<br>Biosensing. Langmuir, 2015, 31, 771-781.                                                                                                           | 3.5  | 44        |
| 76 | Multifunctional hydrogel nano-probes for atomic force microscopy. Nature Communications, 2016, 7, 11566.                                                                                                                                       | 12.8 | 44        |
| 77 | Conformational flexibility of fatty acid-free bovine serum albumin proteins enables superior antifouling coatings. Communications Materials, 2020, 1, .                                                                                        | 6.9  | 44        |
| 78 | Influence of pH and Surface Chemistry on Poly( <scp>l</scp> -lysine) Adsorption onto Solid Supports<br>Investigated by Quartz Crystal Microbalance with Dissipation Monitoring. Journal of Physical<br>Chemistry B, 2015, 119, 10554-10565.    | 2.6  | 43        |
| 79 | Nanotechnology Education for the Global World: Training the Leaders of Tomorrow. ACS Nano, 2016, 10, 5595-5599.                                                                                                                                | 14.6 | 43        |
| 80 | A small molecule inhibits HCV replication and alters NS4B's subcellular distribution. Antiviral Research, 2010, 87, 1-8.                                                                                                                       | 4.1  | 42        |
| 81 | Controlling Lipid Membrane Architecture for Tunable Nanoplasmonic Biosensing. Small, 2014, 10, 4828-4832.                                                                                                                                      | 10.0 | 42        |
| 82 | Colloidal templating of highly ordered gelatin methacryloyl-based hydrogel platforms for three-dimensional tissue analogues. NPG Asia Materials, 2017, 9, e412-e412.                                                                           | 7.9  | 42        |
| 83 | Quartz resonator signatures under Newtonian liquid loading for initial instrument check. Journal of<br>Colloid and Interface Science, 2007, 315, 248-254.                                                                                      | 9.4  | 40        |
| 84 | Deciphering How Pore Formation Causes Strain-Induced Membrane Lysis of Lipid Vesicles. Journal of the American Chemical Society, 2016, 138, 1406-1413.                                                                                         | 13.7 | 40        |
| 85 | Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chemistry -<br>an Asian Journal, 2018, 13, 3366-3377.                                                                                                    | 3.3  | 40        |
| 86 | Surface-Based Nanoplasmonic Sensors for Biointerfacial Science Applications. Bulletin of the Chemical Society of Japan, 2019, 92, 1404-1412.                                                                                                   | 3.2  | 40        |
| 87 | Microplastics released from food containers can suppress lysosomal activity in mouse macrophages.<br>Journal of Hazardous Materials, 2022, 435, 128980.                                                                                        | 12.4 | 40        |
| 88 | Model Membrane Platforms for Biomedicine: Case Study on Antiviral Drug Development.<br>Biointerphases, 2012, 7, 18.                                                                                                                            | 1.6  | 39        |
| 89 | Kinetics of the formation of a protein corona around nanoparticles. Mathematical Biosciences, 2016, 282, 82-90.                                                                                                                                | 1.9  | 39        |
| 90 | Cloaking Silica Nanoparticles with Functional Protein Coatings for Reduced Complement Activation and Cellular Uptake. ACS Nano, 2020, 14, 11950-11961.                                                                                         | 14.6 | 39        |

| #   | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Binding Dynamics of Hepatitis C Virus' NS5A Amphipathic Peptide to Cell and Model Membranes. Journal of Virology, 2007, 81, 6682-6689.                                                                                                                | 3.4  | 38        |
| 92  | Phosphatidylinositol 4,5-Bisphosphate Is an HCV NS5A Ligand and Mediates Replication of the Viral Genome. Gastroenterology, 2015, 148, 616-625.                                                                                                       | 1.3  | 37        |
| 93  | Controlling the Formation of Phospholipid Monolayer, Bilayer, and Intact Vesicle Layer on Graphene.<br>ACS Applied Materials & Interfaces, 2016, 8, 11875-11880.                                                                                      | 8.0  | 37        |
| 94  | Indirect Nanoplasmonic Sensing Platform for Monitoring Temperature-Dependent Protein Adsorption.<br>Analytical Chemistry, 2017, 89, 12976-12983.                                                                                                      | 6.5  | 36        |
| 95  | Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model: Correlation with physicochemical features and clinical information. Journal of Controlled Release, 2018, 270, 268-274.        | 9.9  | 36        |
| 96  | Materials science approaches in the development of broad-spectrum antiviral therapies. Nature<br>Materials, 2020, 19, 813-816.                                                                                                                        | 27.5 | 36        |
| 97  | Hydrophobic nanoparticles improve permeability of cell-encapsulating poly(ethylene glycol)<br>hydrogels while maintaining patternability. Proceedings of the National Academy of Sciences of the<br>United States of America, 2010, 107, 20709-20714. | 7.1  | 34        |
| 98  | Fluorescence-based immunosensor using three-dimensional CNT network structure for sensitive and reproducible detection of oral squamous cell carcinoma biomarker. Analytica Chimica Acta, 2018, 1027, 101-108.                                        | 5.4  | 34        |
| 99  | Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix<br>Field. ACS Nano, 2019, 13, 2410-2419.                                                                                                                  | 14.6 | 34        |
| 100 | Interfacial Binding Dynamics of Bee Venom Phospholipase A <sub>2</sub> Investigated by Dynamic Light<br>Scattering and Quartz Crystal Microbalance. Langmuir, 2010, 26, 4103-4112.                                                                    | 3.5  | 33        |
| 101 | AH Peptide-Mediated Formation of Charged Planar Lipid Bilayers. Journal of Physical Chemistry B, 2014, 118, 3616-3621.                                                                                                                                | 2.6  | 33        |
| 102 | Photocurable Albumin Methacryloyl Hydrogels as a Versatile Platform for Tissue Engineering. ACS<br>Applied Bio Materials, 2020, 3, 920-934.                                                                                                           | 4.6  | 33        |
| 103 | Investigating how vesicle size influences vesicle adsorption on titanium oxide: a competition between steric packing and shape deformation. Physical Chemistry Chemical Physics, 2017, 19, 2131-2139.                                                 | 2.8  | 31        |
| 104 | Chemical design principles of next-generation antiviral surface coatings. Chemical Society Reviews, 2021, 50, 9741-9765.                                                                                                                              | 38.1 | 31        |
| 105 | Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional<br>PEC-based hydrogel. Biomedical Materials (Bristol), 2009, 4, 011001.                                                                                 | 3.3  | 30        |
| 106 | Correlation between Membrane Partitioning and Functional Activity in a Single Lipid Vesicle Assay<br>Establishes Design Guidelines for Antiviral Peptides. Small, 2015, 11, 2372-2379.                                                                | 10.0 | 30        |
| 107 | Fabrication of charged membranes by the solvent-assisted lipid bilayer (SALB) formation method on<br>SiO <sub>2</sub> and Al <sub>2</sub> O <sub>3</sub> . Physical Chemistry Chemical Physics, 2015, 17,<br>11546-11552.                             | 2.8  | 30        |
| 108 | Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers. Langmuir,<br>2017, 33, 14756-14765.                                                                                                                               | 3.5  | 30        |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | ECM proteins in a microporous scaffold influence hepatocyte morphology, function, and gene expression. Scientific Reports, 2016, 6, 37427.                                                                                             | 3.3  | 29        |
| 110 | Vesicle Adsorption on Mesoporous Silica and Titania. Langmuir, 2010, 26, 16630-16633.                                                                                                                                                  | 3.5  | 28        |
| 111 | Extraction of cage-like sporopollenin exine capsules from dandelion pollen grains. Scientific Reports, 2018, 8, 6565.                                                                                                                  | 3.3  | 28        |
| 112 | A Numerical Study on the Effect of Particle Surface Coverage on the Quartz Crystal Microbalance Response. Analytical Chemistry, 2018, 90, 2238-2245.                                                                                   | 6.5  | 28        |
| 113 | Addressing the digital skills gap for future education. Nature Human Behaviour, 2021, 5, 542-545.                                                                                                                                      | 12.0 | 28        |
| 114 | Colloidâ€Mediated Fabrication of a 3D Pollen Sponge for Oil Remediation Applications. Advanced Functional Materials, 2021, 31, 2101091.                                                                                                | 14.9 | 28        |
| 115 | Observation of Stripe Superstructure in the β-Two-Phase Coexistence Region of<br>Cholesterol–Phospholipid Mixtures in Supported Membranes. Journal of the American Chemical<br>Society, 2014, 136, 16962-16965.                        | 13.7 | 27        |
| 116 | Characterizing How Acidic pH Conditions Affect the Membrane-Disruptive Activities of Lauric Acid and<br>Glycerol Monolaurate. Langmuir, 2018, 34, 13745-13753.                                                                         | 3.5  | 27        |
| 117 | In-depth characterization of congenital Zika syndrome in immunocompetent mice: Antibody-dependent<br>enhancement and an antiviral peptide therapy. EBioMedicine, 2019, 44, 516-529.                                                    | 6.1  | 27        |
| 118 | A model derived from hydrodynamic simulations for extracting the size of spherical particles from the quartz crystal microbalance. Analyst, The, 2017, 142, 3370-3379.                                                                 | 3.5  | 26        |
| 119 | Quartz Crystal Microbalance Model for Quantitatively Probing the Deformation of Adsorbed<br>Particles at Low Surface Coverage. Analytical Chemistry, 2017, 89, 11711-11718.                                                            | 6.5  | 26        |
| 120 | Hydrolytic Stability of Methacrylamide and Methacrylate in Gelatin Methacryloyl and Decoupling of<br>Gelatin Methacrylamide from Gelatin Methacryloyl through Hydrolysis. Macromolecular Chemistry<br>and Physics, 2018, 219, 1800266. | 2.2  | 26        |
| 121 | Characterizing the Supported Lipid Membrane Formation from Cholesterol-Rich Bicelles. Langmuir, 2019, 35, 15063-15070.                                                                                                                 | 3.5  | 26        |
| 122 | Natural Products for the Treatment of Trachoma and Chlamydia trachomatis. Molecules, 2015, 20, 4180-4203.                                                                                                                              | 3.8  | 25        |
| 123 | Adsorption of hyaluronic acid on solid supports: Role of pH and surface chemistry in thin film self-assembly. Journal of Colloid and Interface Science, 2015, 448, 197-207.                                                            | 9.4  | 25        |
| 124 | Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen. Scientific Reports, 2016, 6, 28017.                                                                                                                            | 3.3  | 25        |
| 125 | Comparing the Membrane-Interaction Profiles of Two Antiviral Peptides: Insights into<br>Structure–Function Relationship. Langmuir, 2019, 35, 9934-9943.                                                                                | 3.5  | 25        |
| 126 | Influence of NaCl Concentration on Bicelle-Mediated SLB Formation. Langmuir, 2019, 35, 10658-10666.                                                                                                                                    | 3.5  | 25        |

| #   | Article                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Biomimetic Nanomaterial Strategies for Virus Targeting: Antiviral Therapies and Vaccines. Advanced<br>Functional Materials, 2021, 31, 2008352.                                             | 14.9 | 25        |
| 128 | Creation of Lipid Partitions by Deposition of Amphipathic Viral Peptides. Langmuir, 2007, 23, 10855-10863.                                                                                 | 3.5  | 24        |
| 129 | Chemical processing strategies to obtain sporopollenin exine capsules from multi-compartmental pine pollen. Journal of Industrial and Engineering Chemistry, 2017, 53, 375-385.            | 5.8  | 24        |
| 130 | Macromolecular Microencapsulation Using Pine Pollen: Loading Optimization and Controlled Release with Natural Materials. ACS Applied Materials & amp; Interfaces, 2018, 10, 28428-28439.   | 8.0  | 24        |
| 131 | Targeting the Achilles Heel of Mosquito-Borne Viruses for Antiviral Therapy. ACS Infectious Diseases, 2019, 5, 4-8.                                                                        | 3.8  | 24        |
| 132 | Optimizing the Performance of Supported Lipid Bilayers as Cell Culture Platforms Based on Extracellular Matrix Functionalization. ACS Omega, 2017, 2, 2395-2404.                           | 3.5  | 23        |
| 133 | Long-term culture of human liver tissue with advanced hepatic functions. JCI Insight, 2017, 2, .                                                                                           | 5.0  | 23        |
| 134 | Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon<br>Resonance Sensing. Analytical Chemistry, 2017, 89, 4301-4308.                     | 6.5  | 22        |
| 135 | Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane<br>Remodeling. Journal of Physical Chemistry Letters, 2020, 11, 4951-4957.              | 4.6  | 22        |
| 136 | BIOPHYSICAL APPLICATIONS OF SCANNING ION CONDUCTANCE MICROSCOPY (SICM). Modern Physics Letters B, 2012, 26, 1130003.                                                                       | 1.9  | 21        |
| 137 | Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo<br>Simulations. PLoS ONE, 2016, 11, e0161915.                                                       | 2.5  | 21        |
| 138 | Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical Tuning of<br>Lowâ€Rigidity, Supported Lipid Membranes. Advanced Healthcare Materials, 2017, 6, 1700243. | 7.6  | 21        |
| 139 | Digital printing of shape-morphing natural materials. Proceedings of the National Academy of<br>Sciences of the United States of America, 2021, 118, .                                     | 7.1  | 21        |
| 140 | Natural Products for the Treatment of Chlamydiaceae Infections. Microorganisms, 2016, 4, 39.                                                                                               | 3.6  | 20        |
| 141 | Cholesterol-Enriched Domain Formation Induced by Viral-Encoded, Membrane-Active Amphipathic<br>Peptide. Biophysical Journal, 2016, 110, 176-187.                                           | 0.5  | 20        |
| 142 | Lightâ€Induced Surface Modification of Natural Plant Microparticles: Toward Colloidal Science and Cellular Adhesion Applications. Advanced Functional Materials, 2018, 28, 1707568.        | 14.9 | 20        |
| 143 | Molecular diffusion and nano-mechanical properties of multi-phase supported lipid bilayers. Physical<br>Chemistry Chemical Physics, 2019, 21, 16686-16693.                                 | 2.8  | 20        |
| 144 | Biofunctionalized Hydrogel Microscaffolds Promote 3D Hepatic Sheet Morphology. Macromolecular<br>Bioscience, 2016, 16, 314-321.                                                            | 4.1  | 19        |

NAM-JOON CHO

| #   | Article                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Pulled microcapillary tube resonators with electrical readout for mass sensing applications.<br>Scientific Reports, 2016, 6, 33799.                                                        | 3.3  | 19        |
| 146 | A phenomenological model of the solvent-assisted lipid bilayer formation method. Physical Chemistry Chemical Physics, 2016, 18, 24157-24163.                                               | 2.8  | 19        |
| 147 | Relationship between vesicle size and steric hindrance influences vesicle rupture on solid supports.<br>Physical Chemistry Chemical Physics, 2016, 18, 3065-3072.                          | 2.8  | 19        |
| 148 | Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays. Sensors, 2018, 18, 1283.                                       | 3.8  | 19        |
| 149 | Response of microbial membranes to butanol: interdigitationvs.disorder. Physical Chemistry Chemical Physics, 2019, 21, 11903-11915.                                                        | 2.8  | 19        |
| 150 | Scalable Fabrication of Quasi-One-Dimensional Gold Nanoribbons for Plasmonic Sensing. Nano<br>Letters, 2020, 20, 1747-1754.                                                                | 9.1  | 19        |
| 151 | Peptide-induced formation of a tethered lipid bilayer membrane on mesoporous silica. European<br>Biophysics Journal, 2015, 44, 27-36.                                                      | 2.2  | 18        |
| 152 | Supported Lipid Bilayer Platform To Test Inhibitors of the Membrane Attack Complex: Insights into<br>Biomacromolecular Assembly and Regulation. Biomacromolecules, 2015, 16, 3594-3602.    | 5.4  | 18        |
| 153 | Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their<br>Hydrophobic Thickness. Langmuir, 2018, 34, 9548-9560.                                     | 3.5  | 18        |
| 154 | Understanding How Membrane Surface Charge Influences Lipid Bicelle Adsorption onto Oxide<br>Surfaces. Langmuir, 2019, 35, 8436-8444.                                                       | 3.5  | 18        |
| 155 | Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides.<br>International Journal of Molecular Sciences, 2021, 22, 9664.                           | 4.1  | 18        |
| 156 | Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional<br>PEG-based hydrogel. Biomedical Materials (Bristol), 2009, 4, 011001.                      | 3.3  | 18        |
| 157 | Analyzing Spur-Distorted Impedance Spectra for the QCM. Journal of Sensors, 2009, 2009, 1-8.                                                                                               | 1.1  | 17        |
| 158 | Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications.<br>Chemical Record, 2019, 19, 1891-1912.                                                     | 5.8  | 17        |
| 159 | Understanding how natural sequence variation in serum albumin proteins affects conformational stability and protein adsorption. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111194. | 5.0  | 17        |
| 160 | Entrepreneurial Talent Building for 21st Century Agricultural Innovation. ACS Nano, 2021, 15, 10748-10758.                                                                                 | 14.6 | 17        |
| 161 | Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays. Sensors, 2017, 17, 1484.                                               | 3.8  | 16        |
| 162 | Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide<br>Surfaces. Analytical Chemistry, 2018, 90, 12503-12511.                                 | 6.5  | 16        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent<br>Biomacromolecular Interactions. Analytical Chemistry, 2018, 90, 7458-7466.                                                                   | 6.5  | 16        |
| 164 | Rupture of zwitterionic lipid vesicles by an amphipathic, α-helical peptide: Indirect effects of sensor<br>surface and implications for experimental analysis. Colloids and Surfaces B: Biointerfaces, 2014, 121,<br>340-346. | 5.0  | 15        |
| 165 | Biomembrane Fabrication by the Solvent-assisted Lipid Bilayer (SALB) Method. Journal of Visualized Experiments, 2015, , .                                                                                                     | 0.3  | 15        |
| 166 | Membrane adaptation limitations in <i>Enterococcus faecalis</i> underlie sensitivity and the inability to develop significant resistance to conjugated oligoelectrolytes. RSC Advances, 2018, 8, 10284-10293.                 | 3.6  | 15        |
| 167 | Improved Size Determination by Nanoparticle Tracking Analysis: Influence of Recognition Radius.<br>Analytical Chemistry, 2019, 91, 9508-9515.                                                                                 | 6.5  | 15        |
| 168 | Lipid-Bicelle-Coated Microfluidics for Intracellular Delivery with Reduced Fouling. ACS Applied Materials & amp; Interfaces, 2020, 12, 45744-45752.                                                                           | 8.0  | 15        |
| 169 | Lipid coating technology: A potential solution to address the problem of sticky containers and vanishing drugs. View, 2022, 3, 20200078.                                                                                      | 5.3  | 15        |
| 170 | Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials. Advanced Functional Materials, 2021, 31, 2106276.                                                                                                 | 14.9 | 15        |
| 171 | Quantitative Evaluation of Peptide–Material Interactions by a Force Mapping Method: Guidelines for<br>Surface Modification. Langmuir, 2015, 31, 8006-8012.                                                                    | 3.5  | 14        |
| 172 | Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials. Physical Chemistry Chemical Physics, 2016, 18, 14454-14459.                                           | 2.8  | 14        |
| 173 | Influence of membrane surface charge on adsorption of complement proteins onto supported lipid bilayers. Colloids and Surfaces B: Biointerfaces, 2016, 148, 270-277.                                                          | 5.0  | 14        |
| 174 | Supported lipid bilayer repair mediated by AH peptide. Physical Chemistry Chemical Physics, 2016, 18, 3040-3047.                                                                                                              | 2.8  | 14        |
| 175 | Phenotypic regulation of liver cells in a biofunctionalized three-dimensional hydrogel platform.<br>Integrative Biology (United Kingdom), 2016, 8, 156-166.                                                                   | 1.3  | 14        |
| 176 | Preserving the inflated structure of lyophilized sporopollenin exine capsules with polyethylene glycol osmolyte. Journal of Industrial and Engineering Chemistry, 2018, 61, 255-264.                                          | 5.8  | 14        |
| 177 | Species-Specific Biodegradation of Sporopollenin-Based Microcapsules. Scientific Reports, 2019, 9, 9626.                                                                                                                      | 3.3  | 14        |
| 178 | Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers.<br>Langmuir, 2019, 35, 3568-3575.                                                                                          | 3.5  | 14        |
| 179 | Unraveling How Ethanol-Induced Conformational Changes Affect BSA Protein Adsorption onto Silica<br>Surfaces. Langmuir, 2020, 36, 9215-9224.                                                                                   | 3.5  | 14        |
| 180 | Crystallization of Cholesterol in Phospholipid Membranes Follows Ostwald's Rule of Stages. Journal of the American Chemical Society, 2020, 142, 21872-21882.                                                                  | 13.7 | 14        |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Supported Lipid Bilayer Formation from Phospholipid-Fatty Acid Bicellar Mixtures. Langmuir, 2020, 36, 5021-5029.                                                                                                                                         | 3.5  | 14        |
| 182 | Comparing Protein Adsorption onto Alumina and Silica Nanomaterial Surfaces: Clues for Vaccine<br>Adjuvant Development. Langmuir, 2021, 37, 1306-1314.                                                                                                    | 3.5  | 14        |
| 183 | Extracellular Matrix Functionalization and Huh-7.5 Cell Coculture Promote the Hepatic<br>Differentiation of Human Adipose-Derived Mesenchymal Stem Cells in a 3D ICC Hydrogel Scaffold. ACS<br>Biomaterials Science and Engineering, 2016, 2, 2255-2265. | 5.2  | 13        |
| 184 | Elucidating How Different Amphipathic Stabilizers Affect BSA Protein Conformational Properties and Adsorption Behavior. Langmuir, 2020, 36, 10606-10614.                                                                                                 | 3.5  | 13        |
| 185 | pH-Dependent Antibacterial Activity of Glycolic Acid: Implications for Anti-Acne Formulations.<br>Scientific Reports, 2020, 10, 7491.                                                                                                                    | 3.3  | 13        |
| 186 | Lipid Bicelle Micropatterning Using Chemical Lift-Off Lithography. ACS Applied Materials &<br>Interfaces, 2020, 12, 13447-13455.                                                                                                                         | 8.0  | 13        |
| 187 | Real-time nanoplasmonic sensing of three-dimensional morphological changes in a supported lipid bilayer and antimicrobial testing applications. Biosensors and Bioelectronics, 2021, 174, 112768.                                                        | 10.1 | 13        |
| 188 | Supported lipid bilayer coatings: Fabrication, bioconjugation, and diagnostic applications. Applied Materials Today, 2021, 25, 101183.                                                                                                                   | 4.3  | 13        |
| 189 | Hydrodynamic Propulsion of Liposomes Electrostatically Attracted to a Lipid Membrane Reveals<br>Size-Dependent Conformational Changes. ACS Nano, 2016, 10, 8812-8820.                                                                                    | 14.6 | 12        |
| 190 | Hydrophobic to superhydrophilic tuning of multifunctional sporopollenin for microcapsule and bio-composite applications. Applied Materials Today, 2020, 18, 100525.                                                                                      | 4.3  | 12        |
| 191 | Medicinal Activities and Nanomedicine Delivery Strategies for Brucea javanica Oil and Its Molecular<br>Components. Molecules, 2020, 25, 5414.                                                                                                            | 3.8  | 12        |
| 192 | "Multipoint Force Feedback―Leveling of Massively Parallel Tip Arrays in Scanning Probe Lithography.<br>Small, 2015, 11, 4526-4531.                                                                                                                       | 10.0 | 11        |
| 193 | Spatiotemporal dynamics of solvent-assisted lipid bilayer formation. Physical Chemistry Chemical Physics, 2015, 17, 31145-31151.                                                                                                                         | 2.8  | 11        |
| 194 | Multistep Compositional Remodeling of Supported Lipid Membranes by Interfacially Active Phosphatidylinositol Kinases. Analytical Chemistry, 2016, 88, 5042-5045.                                                                                         | 6.5  | 11        |
| 195 | Immobilization Strategies for Functional Complement Convertase Assembly at Lipid Membrane<br>Interfaces. Langmuir, 2017, 33, 7332-7342.                                                                                                                  | 3.5  | 11        |
| 196 | Modulating conformational stability of human serum albumin and implications for surface passivation applications. Colloids and Surfaces B: Biointerfaces, 2019, 180, 306-312.                                                                            | 5.0  | 11        |
| 197 | Versatile formation of supported lipid bilayers from bicellar mixtures of phospholipids and capric acid. Scientific Reports, 2020, 10, 13849.                                                                                                            | 3.3  | 11        |
| 198 | Unraveling How Multivalency Triggers Shape Deformation of Sub-100 nm Lipid Vesicles. Journal of<br>Physical Chemistry Letters, 2021, 12, 6722-6729.                                                                                                      | 4.6  | 11        |

Ναμ-Joon Cho

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | The reliable targeting of specific drug release profiles by integrating arrays of different albumin-encapsulated microsphere types. Biomaterials, 2009, 30, 6648-6654.                                                                          | 11.4 | 10        |
| 200 | Probing Membrane Viscosity and Interleaflet Friction of Supported Lipid Bilayers by Tracking<br>Electrostatically Adsorbed, Nano‣ized Vesicles. Small, 2016, 12, 6338-6344.                                                                     | 10.0 | 10        |
| 201 | Fabrication of Inverted Colloidal Crystal Poly(ethylene glycol) Scaffold: A Three-dimensional Cell<br>Culture Platform for Liver Tissue Engineering. Journal of Visualized Experiments, 2016, , .                                               | 0.3  | 10        |
| 202 | Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers. Journal of Hazardous Materials, 2017, 339, 264-273.                                                                                | 12.4 | 10        |
| 203 | Hybrid Biomimetic Interfaces Integrating Supported Lipid Bilayers with Decellularized Extracellular<br>Matrix Components. Langmuir, 2018, 34, 3507-3516.                                                                                        | 3.5  | 10        |
| 204 | Fabrication of Multicomponent, Spatially Segregated DNA and Protein-Functionalized Supported<br>Membrane Microarray. Langmuir, 2018, 34, 9781-9788.                                                                                             | 3.5  | 10        |
| 205 | Microfluidic liquid cell chamber for scanning probe microscopy measurement application. Review of Scientific Instruments, 2019, 90, 046105.                                                                                                     | 1.3  | 10        |
| 206 | Biologically interfaced nanoplasmonic sensors. Nanoscale Advances, 2020, 2, 3103-3114.                                                                                                                                                          | 4.6  | 10        |
| 207 | Highly substituted decoupled gelatin methacrylamide free of hydrolabile methacrylate impurities: An<br>optimum choice for long-term stability and cytocompatibility. International Journal of Biological<br>Macromolecules, 2021, 167, 479-490. | 7.5  | 10        |
| 208 | Size-dependent, stochastic nature of lipid exchange between nano-vesicles and model membranes.<br>Nanoscale, 2016, 8, 13513-13520.                                                                                                              | 5.6  | 9         |
| 209 | Optimal formation of uniform-phase supported lipid bilayers from phospholipid–monoglyceride<br>bicellar mixtures. Journal of Industrial and Engineering Chemistry, 2020, 88, 285-291.                                                           | 5.8  | 9         |
| 210 | Influence of Chemical and Physical Change of Pollen Microgels on Swelling/Deâ€&welling Behavior.<br>Macromolecular Rapid Communications, 2020, 41, e2000155.                                                                                    | 3.9  | 9         |
| 211 | An Intrinsically Microâ€/Nanostructured Pollen Substrate with Tunable Optical Properties for Optoelectronic Applications. Advanced Materials, 2021, 33, e2100566.                                                                               | 21.0 | 9         |
| 212 | Membrane attack complex formation on a supported lipid bilayer: initial steps towards a CARPA predictor nanodevice. European Journal of Nanomedicine, 2015, 7, .                                                                                | 0.6  | 8         |
| 213 | Alternative configuration scheme for signal amplification with scanning ion conductance microscopy. Review of Scientific Instruments, 2015, 86, 023706.                                                                                         | 1.3  | 8         |
| 214 | Brownian Dynamics of Electrostatically Adhering Small Vesicles to a Membrane Surface Induces<br>Domains and Probes Viscosity. Langmuir, 2016, 32, 5445-5450.                                                                                    | 3.5  | 8         |
| 215 | Spatially Controlled Molecular Encapsulation in Natural Pine Pollen Microcapsules. Particle and Particle Systems Characterization, 2018, 35, 1800151.                                                                                           | 2.3  | 8         |
| 216 | Role of Membrane Stretch in Adsorption of Antiviral Peptides onto Lipid Membranes and Membrane<br>Pore Formation. Langmuir, 2021, 37, 13390-13398.                                                                                              | 3.5  | 8         |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Reconstitution and Functional Analysis of a Full-Length Hepatitis C Virus NS5B Polymerase on a<br>Supported Lipid Bilayer. ACS Central Science, 2016, 2, 456-466.                                                         | 11.3 | 7         |
| 218 | Detection of Amphipathic Viral Peptide on Screen-Printed Electrodes by Liposome Rupture Impact<br>Voltammetry. Analytical Chemistry, 2017, 89, 11753-11757.                                                               | 6.5  | 7         |
| 219 | Quantitative Evaluation of Viral Protein Binding to Phosphoinositide Receptors and Pharmacological<br>Inhibition. Analytical Chemistry, 2017, 89, 9742-9750.                                                              | 6.5  | 7         |
| 220 | Porcine hepatocytes culture on biofunctionalized 3D inverted colloidal crystal scaffolds as an <i>in vitro</i> model for predicting drug hepatotoxicity. RSC Advances, 2019, 9, 17995-18007.                              | 3.6  | 7         |
| 221 | Human blood plasma catalyses the degradation of Lycopodium plant sporoderm microcapsules.<br>Scientific Reports, 2019, 9, 2944.                                                                                           | 3.3  | 7         |
| 222 | Micropatterned Viral Membrane Clusters for Antiviral Drug Evaluation. ACS Applied Materials &<br>Interfaces, 2019, 11, 13984-13990.                                                                                       | 8.0  | 7         |
| 223 | Degradation of the sporopollenin exine capsules (SECs) in human plasma. Applied Materials Today, 2020, 19, 100594.                                                                                                        | 4.3  | 7         |
| 224 | Supported lipid bilayer platform for characterizing the optimization of mixed monoglyceride nano-micelles. Applied Materials Today, 2020, 19, 100598.                                                                     | 4.3  | 7         |
| 225 | Self-Assembly of Solubilized Human Hair Keratins. ACS Biomaterials Science and Engineering, 2021, 7, 83-89.                                                                                                               | 5.2  | 7         |
| 226 | Engineered lipid bicelle nanostructures for membrane-disruptive antibacterial applications. Applied<br>Materials Today, 2021, 22, 100947.                                                                                 | 4.3  | 7         |
| 227 | Inkjet-Printed Phospholipid Bilayers on Titanium Oxide Surfaces: Towards Functional Membrane<br>Biointerfaces. Membranes, 2022, 12, 361.                                                                                  | 3.0  | 7         |
| 228 | Recyclable and Reusable Natural Plantâ€Based Paper for Repeated Digital Printing and Unprinting.<br>Advanced Materials, 2022, 34, e2109367.                                                                               | 21.0 | 7         |
| 229 | Preparation of Highly Monodisperse Electroactive Pollen Biocomposites. ChemNanoMat, 2016, 2, 414-418.                                                                                                                     | 2.8  | 6         |
| 230 | Ultrahigh surface sensitivity of deposited gold nanorod arrays for nanoplasmonic biosensing. Applied<br>Materials Today, 2021, 23, 101046.                                                                                | 4.3  | 6         |
| 231 | Solvent-induced conformational tuning of lysozyme protein adlayers on silica surfaces: A QCM-D and LSPR study. International Journal of Biological Macromolecules, 2021, 182, 1906-1914.                                  | 7.5  | 6         |
| 232 | Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules. Nanomaterials, 2022, 12, 1153.                                                     | 4.1  | 6         |
| 233 | Quantitative accounting of dye leakage and photobleaching in single lipid vesicle measurements:<br>Implications for biomacromolecular interaction analysis. Colloids and Surfaces B: Biointerfaces,<br>2019, 182, 110338. | 5.0  | 5         |
| 234 | Probing the influence of tether density on tethered bilayer lipid membrane (tBLM)-peptide interactions.<br>Applied Materials Today, 2020, 18, 100527.                                                                     | 4.3  | 5         |

| #   | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Dynamic remodeling of giant unilamellar vesicles induced by monoglyceride nano-micelles: Insights into supramolecular organization. Applied Materials Today, 2021, 24, 101099.                                    | 4.3  | 5         |
| 236 | Lipid bilayer coatings for rapid enzyme-linked immunosorbent assay. Applied Materials Today, 2021, 24, 101128.                                                                                                    | 4.3  | 5         |
| 237 | Thermodynamic Modeling of Solvent-Assisted Lipid Bilayer Formation Process. Micromachines, 2022, 13, 134.                                                                                                         | 2.9  | 5         |
| 238 | Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane<br>Bending Effects. Journal of Physical Chemistry Letters, 2022, 13, 1480-1488.                                       | 4.6  | 5         |
| 239 | Self-assembly and sequence length dependence on nanofibrils of polyglutamine peptides.<br>Neuropeptides, 2016, 57, 71-83.                                                                                         | 2.2  | 4         |
| 240 | Effect of Glucose on the Mobility of Membrane-Adhering Liposomes. Langmuir, 2018, 34, 503-511.                                                                                                                    | 3.5  | 4         |
| 241 | Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers. Langmuir, 2018, 34, 10764-10773.                                                                                                | 3.5  | 4         |
| 242 | Minimal Reconstitution of Membranous Web Induced by a Vesicle–Peptide Sol–Gel Transition.<br>Biomacromolecules, 2019, 20, 1709-1718.                                                                              | 5.4  | 4         |
| 243 | Conformational stability as a quality attribute for the cell therapy raw material human serum albumin. RSC Advances, 2021, 11, 15332-15339.                                                                       | 3.6  | 4         |
| 244 | Surface engineering of plasmonic gold nanoisland platforms for high-sensitivity refractometric biosensing applications. Applied Materials Today, 2021, 26, 101280.                                                | 4.3  | 4         |
| 245 | Effect of a Non-Newtonian Load on SignatureS2for Quartz Crystal Microbalance Measurements.<br>Journal of Sensors, 2014, 2014, 1-8.                                                                                | 1.1  | 3         |
| 246 | Extraction of Plant-based Capsules for Microencapsulation Applications. Journal of Visualized Experiments, 2016, , .                                                                                              | 0.3  | 3         |
| 247 | Targeting the Achilles Heel of Zika Virus and Other Emerging Viral Pathogens. Advanced Therapeutics, 2018, 1, 1800045.                                                                                            | 3.2  | 3         |
| 248 | Disentangling bulk polymers from adsorbed polymers using the quartz crystal microbalance. Applied<br>Materials Today, 2020, 18, 100460.                                                                           | 4.3  | 3         |
| 249 | Graphene Oxide Mimics Biological Signaling Cue to Rescue Starving Bacteria. Advanced Functional Materials, 2021, 31, 2102328.                                                                                     | 14.9 | 3         |
| 250 | Biophysical Measurement Strategies for Antiviral Drug Development: Recent Progress in Virus-Mimetic<br>Platforms Down to the Single Particle Level. Accounts of Chemical Research, 2021, 54, 3204-3214.           | 15.6 | 3         |
| 251 | Selective Recognition of Phosphatidylinositol Phosphate Receptors by C-Terminal Tail of Mitotic<br>Kinesin-like Protein 2 (MKlp2). Journal of Physical Chemistry B, 2022, 126, 2345-2352.                         | 2.6  | 3         |
| 252 | Unraveling the distinct germination processes of sporopollenin-based pollen grains and spores through morphological analyses upon natural nano-architectonics process. Applied Materials Today, 2022, 27, 101471. | 4.3  | 3         |

| #   | Article                                                                                                                                                                                                                                | IF               | CITATIONS     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 253 | Kinetics of the maintenance of the epidermis. Open Physics, 2013, 11, .                                                                                                                                                                | 1.7              | 2             |
| 254 | Unraveling how nanoscale curvature drives formation of lysozyme protein monolayers on inorganic oxide surfaces. Applied Materials Today, 2020, 20, 100729.                                                                             | 4.3              | 2             |
| 255 | A facile approach to patterning pollen microparticles for in situ imaging. Applied Materials Today, 2020, 20, 100702.                                                                                                                  | 4.3              | 2             |
| 256 | Mechanistic Aspects of the Evolution of 3D Cholesterol Crystallites in a Supported Lipid Membrane via<br>a Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir, 2021, 37, 4562-4570.                                     | 3.5              | 2             |
| 257 | 3D Pollen Sponge: Colloidâ€Mediated Fabrication of a 3D Pollen Sponge for Oil Remediation Applications<br>(Adv. Funct. Mater. 24/2021). Advanced Functional Materials, 2021, 31, 2170173.                                              | 14.9             | 2             |
| 258 | Self-association and conformational variation of NS5A domain 1 of hepatitis C virus. Journal of<br>General Virology, 2018, 99, 194-208.                                                                                                | 2.9              | 2             |
| 259 | Biosensors: Controlling Lipid Membrane Architecture for Tunable Nanoplasmonic Biosensing (Small) Tj ETQq1 1                                                                                                                            | 0.784314<br>10.0 | rgBT /Overloc |
| 260 | Envisioning the Future of Nanotechnology Platforms for Biomedicine. Small, 2016, 12, 1116-1116.                                                                                                                                        | 10.0             | 1             |
| 261 | Biosensors: Graphene-Functionalized Natural Microcapsules: Modular Building Blocks for Ultrahigh<br>Sensitivity Bioelectronic Platforms (Adv. Funct. Mater. 13/2016). Advanced Functional Materials, 2016,<br>26, 2220-2220.           | 14.9             | 1             |
| 262 | Drug Delivery: <i>Lycopodium</i> Spores: A Naturally Manufactured, Superrobust Biomaterial for<br>Drug Delivery (Adv. Funct. Mater. 4/2016). Advanced Functional Materials, 2016, 26, 632-632.                                         | 14.9             | 1             |
| 263 | Cell Adhesion: Dynamic Cellular Interactions with Extracellular Matrix Triggered by Biomechanical<br>Tuning of Lowâ€Rigidity, Supported Lipid Membranes (Adv. Healthcare Mater. 10/2017). Advanced<br>Healthcare Materials, 2017, 6, . | 7.6              | 1             |
| 264 | Envisioning Scientific Innovation in Korea's Demilitarized Zone: A Step toward Economic Progress and<br>Global Peace. ACS Nano, 2018, 12, 5073-5077.                                                                                   | 14.6             | 1             |
| 265 | Nanoarchitectured air-stable supported lipid bilayer incorporating sucrose–bicelle complex system.<br>Nano Convergence, 2022, 9, 3.                                                                                                    | 12.1             | 1             |
| 266 | Engineering Natural Pollen Grains as Multifunctional 3D Printing Materials (Adv. Funct. Mater.) Tj ETQq0 0 0 rgB                                                                                                                       | T /Qyerloc       | k 10 Tf 50 22 |
| 267 | Electrochemical-QCM Investigation of Solid-Supported Lipid Bilayer Formed by AH Peptide Derived from HCV's Nonstructural Protein. ECS Meeting Abstracts, 2008, , .                                                                     | 0.0              | 0             |
| 268 | Antiviral Agents: Correlation between Membrane Partitioning and Functional Activity in a Single Lipid<br>Vesicle Assay Establishes Design Guidelines for Antiviral Peptides (Small 20/2015). Small, 2015, 11,<br>2464-2464.            | 10.0             | 0             |
| 269 | Elucidating how bamboo salt interacts with supported lipid membranes: influence of alkalinity on membrane fluidity. European Biophysics Journal, 2015, 44, 383-391.                                                                    | 2.2              | 0             |
| 270 | Biosensors: Flexible, Graphene-Coated Biocomposite for Highly Sensitive, Real-Time Molecular<br>Detection (Adv. Funct. Mater. 47/2016). Advanced Functional Materials, 2016, 26, 8796-8796.                                            | 14.9             | 0             |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Particle Tracking: Probing Membrane Viscosity and Interleaflet Friction of Supported Lipid Bilayers by<br>Tracking Electrostatically Adsorbed, Nano-Sized Vesicles (Small 46/2016). Small, 2016, 12, 6304-6304.                                          | 10.0 | 0         |
| 272 | Drug Delivery: Plantâ€Based Hollow Microcapsules for Oral Delivery Applications: Toward Optimized<br>Loading and Controlled Release (Adv. Funct. Mater. 31/2017). Advanced Functional Materials, 2017, 27, .                                             | 14.9 | 0         |
| 273 | Functionalized Natural Particles: Lightâ€Induced Surface Modification of Natural Plant Microparticles:<br>Toward Colloidal Science and Cellular Adhesion Applications (Adv. Funct. Mater. 18/2018). Advanced<br>Functional Materials, 2018, 28, 1870120. | 14.9 | 0         |
| 274 | A Broad-Spectrum Antiviral Peptide for Combating Emerging Viral Pathogens. Proceedings for Annual<br>Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY28-1.                                                                             | 0.0  | 0         |