Baoquan Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7705712/publications.pdf

Version: 2024-02-01

38660 34900 10,180 102 50 98 citations g-index h-index papers 104 104 104 8851 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 2018, 36, 258-264.	9.4	1,066
2	DNA Origami as a Carrier for Circumvention of Drug Resistance. Journal of the American Chemical Society, 2012, 134, 13396-13403.	6.6	653
3	DNA Origami as an <i>In Vivo</i> Drug Delivery Vehicle for Cancer Therapy. ACS Nano, 2014, 8, 6633-6643.	7. 3	534
4	Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami. Journal of the American Chemical Society, 2010, 132, 3248-3249.	6.6	502
5	Rolling Up Gold Nanoparticle-Dressed DNA Origami into Three-Dimensional Plasmonic Chiral Nanostructures. Journal of the American Chemical Society, 2012, 134, 146-149.	6.6	382
6	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
7	Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nature Biomedical Engineering, 2019, 3, 183-193.	11.6	324
8	A DNA nanodevice-based vaccine for cancer immunotherapy. Nature Materials, 2021, 20, 421-430.	13.3	320
9	DNAâ€Origamiâ€Directed Selfâ€Assembly of Discrete Silverâ€Nanoparticle Architectures. Angewandte Chemie - International Edition, 2010, 49, 2700-2704.	7.2	278
10	Three-Dimensional Plasmonic Chiral Tetramers Assembled by DNA Origami. Nano Letters, 2013, 13, 2128-2133.	4.5	254
11	Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate. Science, 2006, 314, 1583-1585.	6.0	219
12	A DNA-Based Nanocarrier for Efficient Gene Delivery and Combined Cancer Therapy. Nano Letters, 2018, 18, 3328-3334.	4.5	216
13	Pseudohexagonal 2D DNA Crystals from Double Crossover Cohesion. Journal of the American Chemical Society, 2004, 126, 10230-10231.	6.6	214
14	DNAâ€Nanostructure–Goldâ€Nanorod Hybrids for Enhanced In Vivo Optoacoustic Imaging and Photothermal Therapy. Advanced Materials, 2016, 28, 10000-10007.	11.1	185
15	Plasmonic Toroidal Metamolecules Assembled by DNA Origami. Journal of the American Chemical Society, 2016, 138, 5495-5498.	6.6	165
16	Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell–Nanoparticle Interaction. ACS Nano, 2015, 9, 9912-9921.	7.3	163
17	A Tailored DNA Nanoplatform for Synergistic RNAiâ€∮Chemotherapy of Multidrugâ€Resistant Tumors. Angewandte Chemie - International Edition, 2018, 57, 15486-15490.	7.2	157
18	A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy. ACS Nano, 2016, 10, 3486-3495.	7.3	156

#	Article	IF	CITATIONS
19	DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2018, 57, 2846-2850.	7.2	150
20	Protein analysis of extracellular vesicles to monitor and predict therapeutic response in metastatic breast cancer. Nature Communications, 2021, 12, 2536.	5.8	147
21	Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nature Biotechnology, 2022, 40, 606-617.	9.4	140
22	Rationally Designed DNAâ€Origami Nanomaterials for Drug Delivery In Vivo. Advanced Materials, 2019, 31, e1804785.	11.1	138
23	A Nanobodyâ€Conjugated DNA Nanoplatform for Targeted Platinumâ€Drug Delivery. Angewandte Chemie - International Edition, 2019, 58, 14224-14228.	7.2	135
24	Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. ACS Nano, 2017, 11, 1172-1179.	7.3	129
25	A Tubular DNA Nanodevice as a siRNA/Chemoâ€Drug Coâ€delivery Vehicle for Combined Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 2594-2598.	7.2	128
26	Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami. Nano Letters, 2017, 17, 7125-7130.	4.5	109
27	Visualization of the intracellular location and stability of DNA origami with a label-free fluorescent probe. Chemical Communications, 2012, 48, 11301.	2.2	105
28	DNA origami/gold nanorod hybrid nanostructures for the circumvention of drug resistance. Nanoscale, 2017, 9, 7750-7754.	2.8	104
29	Circularly Polarized Luminescence of Achiral Cyanine Molecules Assembled on DNA Templates. Journal of the American Chemical Society, 2019, 141, 9490-9494.	6.6	103
30	Engineering DNA Self-Assemblies as Templates for Functional Nanostructures. Accounts of Chemical Research, 2014, 47, 1654-1662.	7.6	101
31	A Selfâ€Assembled DNA Origamiâ€Gold Nanorod Complex for Cancer Theranostics. Small, 2015, 11, 5134-5141.	5.2	99
32	3D plasmonic chiral colloids. Nanoscale, 2014, 6, 2077.	2.8	98
33	A Self-Assembled Platform Based on Branched DNA for sgRNA/Cas9/Antisense Delivery. Journal of the American Chemical Society, 2019, 141, 19032-19037.	6.6	93
34	Self-Assembled Catalytic DNA Nanostructures for Synthesis of Para-directed Polyaniline. ACS Nano, 2013, 7, 1591-1598.	7.3	91
35	Self-Assembled DNA Dendrimer Nanoparticle for Efficient Delivery of Immunostimulatory CpG Motifs. ACS Applied Materials & Interfaces, 2017, 9, 20324-20329.	4.0	89
36	DNA-assembled bimetallic plasmonic nanosensors. Light: Science and Applications, 2014, 3, e226-e226.	7.7	80

#	Article	IF	Citations
37	Engineering Gold Nanoparticles with DNA Ligands for Selective Catalytic Oxidation of Chiral Substrates. ACS Catalysis, 2015, 5, 1489-1498.	5 . 5	79
38	Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nature Materials, 2021, 20, 395-402.	13.3	78
39	Rationally designed DNA-based nanocarriers. Advanced Drug Delivery Reviews, 2019, 147, 2-21.	6.6	77
40	Sheathless Focusing and Separation of Diverse Nanoparticles in Viscoelastic Solutions with Minimized Shear Thinning. Analytical Chemistry, 2016, 88, 12547-12553.	3.2	74
41	Efficient Intracellular Delivery of RNase A Using DNA Origami Carriers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11112-11118.	4.0	74
42	Paranemic Crossover DNA: There and Back Again. Chemical Reviews, 2019, 119, 6273-6289.	23.0	69
43	A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis. Nature Communications, 2021, 12, 358.	5.8	69
44	Self-Assembled DNA/Peptide-Based Nanoparticle Exhibiting Synergistic Enzymatic Activity. ACS Nano, 2017, 11, 7251-7258.	7.3	67
45	Shape-Controlled Nanofabrication of Conducting Polymer on Planar DNA Templates. Chemistry of Materials, 2014, 26, 3364-3367.	3.2	66
46	Self-Assembled Double-Bundle DNA Tetrahedron for Efficient Antisense Delivery. ACS Applied Materials & 2018, 10, 23693-23699.	4.0	66
47	A facile and efficient method to modify gold nanorods with thiolated DNA at a low pH value. Chemical Communications, 2013, 49, 2533.	2.2	65
48	Siteâ€Specific Synthesis of Silica Nanostructures on DNA Origami Templates. Advanced Materials, 2020, 32, e2000294.	11.1	61
49	Precise Organization of Metal and Metal Oxide Nanoclusters into Arbitrary Patterns on DNA Origami. Journal of the American Chemical Society, 2019, 141, 17968-17972.	6.6	59
50	Functional DNA Nanostructures for Photonic and Biomedical Applications. Small, 2013, 9, 2210-2222.	5.2	54
51	Fabrication of Metal Nanostructures on DNA Templates. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 13835-13852.	4.0	52
52	Smart Nanomachines Based on DNA Selfâ€Assembly. Small, 2013, 9, 2382-2392.	5.2	50
53	Branched Antisense and siRNA Coâ€Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 1853-1860.	7.2	48
54	Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electronic Advances, 2019, 2, 19000801-19000809.	6.4	44

#	Article	IF	CITATIONS
55	Double cohesion in structural DNA nanotechnology. Organic and Biomolecular Chemistry, 2006, 4, 3414.	1.5	40
56	Strong Light–Matter Interactions in Chiral Plasmonic–Excitonic Systems Assembled on DNA Origami. Nano Letters, 2021, 21, 3573-3580.	4.5	38
57	Multifunctional DNA Origami Nanoplatforms for Drug Delivery. Chemistry - an Asian Journal, 2019, 14, 2193-2202.	1.7	36
58	Designed Self-Assembly of Peptides with G-Quadruplex/Hemin DNAzyme into Nanofibrils Possessing Enzyme-Mimicking Active Sites and Catalytic Functions. ACS Catalysis, 2018, 8, 7016-7024.	5.5	34
59	Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs. ChemPhysChem, 2017, 18, 2977-2980.	1.0	33
60	Biomedical Applications of DNAâ€Based Molecular Devices. Advanced Healthcare Materials, 2019, 8, e1801658.	3.9	33
61	Multifunctional nucleic acid nanostructures for gene therapies. Nano Research, 2018, 11, 5017-5027.	5.8	30
62	A Tailored DNA Nanoplatform for Synergistic RNAiâ€IChemotherapy of Multidrugâ€Resistant Tumors. Angewandte Chemie, 2018, 130, 15712-15716.	1.6	29
63	Gene Therapy Based on Nucleic Acid Nanostructure. Advanced Healthcare Materials, 2020, 9, e2001046.	3.9	29
64	Enzyme Mimic Nanomaterials and Their Biomedical Applications. ChemBioChem, 2020, 21, 2408-2418.	1.3	29
65	Multifunctional Double-Bundle DNA Tetrahedron for Efficient Regulation of Gene Expression. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32461-32467.	4.0	27
66	Shape Complementarity Modulated Self-Assembly of Nanoring and Nanosphere Hetero-nanostructures. Journal of the American Chemical Society, 2020, 142, 11680-11684.	6.6	26
67	DNA Nanostructureâ€Based Imaging Probes and Drug Carriers. ChemMedChem, 2014, 9, 2013-2020.	1.6	25
68	DNA-Based Nanotemplate Directed In Situ Synthesis of Silver Nanoclusters with Specific Fluorescent Emission: Surface-Guided Chemical Reactions. Chemistry of Materials, 2016, 28, 8834-8841.	3.2	25
69	Anticancer Activities of Tumor-killing Nanorobots. Trends in Biotechnology, 2019, 37, 573-577.	4.9	24
70	A Nucleic Acid/Gold Nanorod-Based Nanoplatform for Targeted Gene Editing and Combined Tumor Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 20974-20981.	4.0	24
71	An Aptamer-Modified DNA Tetrahedron-Based Nanogel for Combined Chemo/Gene Therapy of Multidrug-Resistant Tumors. ACS Applied Bio Materials, 2021, 4, 7701-7707.	2.3	22
72	A DNAâ€Based Plasmonic Nanodevice for Cascade Signal Amplification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22

#	Article	IF	CITATIONS
73	Selfâ€Assembled DNA Nanostructures for Biomedical Applications. ChemNanoMat, 2017, 3, 713-724.	1.5	21
74	A Nanobodyâ€Conjugated DNA Nanoplatform for Targeted Platinumâ€Drug Delivery. Angewandte Chemie, 2019, 131, 14362-14366.	1.6	21
75	Enzyme Mimic Based on a Selfâ€Assembled Chitosan/DNA Hybrid Exhibits Superior Activity and Tolerance. Chemistry - A European Journal, 2019, 25, 12576-12582.	1.7	21
76	An RNA/DNA hybrid origami-based nanoplatform for efficient gene therapy. Nanoscale, 2021, 13, 12848-12853.	2.8	21
77	DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie, 2018, 130, 2896-2900.	1.6	17
78	Stimuliâ€Responsive DNA Origami Nanodevices and Their Biological Applications. ChemMedChem, 2022, 17,	1.6	17
79	Hierarchical Assembly of Super-DNA Origami Based on a Flexible and Covalent-Bound Branched DNA Structure. Journal of the American Chemical Society, 2021, 143, 19893-19900.	6.6	17
80	Nucleic acid–based aggregates and their biomedical applications. Aggregate, 2021, 2, 133-144.	5.2	16
81	The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals. Organic and Biomolecular Chemistry, 2016, 14, 7187-7190.	1.5	15
82	Tumor-Targeted DNA Bipyramid for <i>in Vivo</i> Dual-Modality Imaging. ACS Applied Bio Materials, 2020, 3, 2854-2860.	2.3	14
83	Strong plasmon–exciton coupling in bimetallic nanorings and nanocuboids. Journal of Materials Chemistry C, 2020, 8, 7672-7678.	2.7	14
84	A Tubular DNA Nanodevice as a siRNA/Chemoâ€Drug Coâ€delivery Vehicle for Combined Cancer Therapy. Angewandte Chemie, 2021, 133, 2626-2630.	1.6	14
85	Genetically Encoded Double-Stranded DNA-Based Nanostructure Folded by a Covalently Bivalent CRISPR/dCas System. Journal of the American Chemical Society, 2022, 144, 6575-6582.	6.6	11
86	DNA-based enzymatic systems and their applications. IScience, 2022, 25, 104018.	1.9	11
87	A bumpy gold nanostructure exhibiting DNA-engineered stimuli-responsive SERS signals. Nanoscale, 2018, 10, 9455-9459.	2.8	10
88	Branched Antisense and siRNA Coâ€Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angewandte Chemie, 2021, 133, 1881-1888.	1.6	10
89	Facilitation of DNA self-assembly by relieving the torsional strains between building blocks. Organic and Biomolecular Chemistry, 2017, 15, 465-469.	1.5	9
90	DNA origami directed fabrication of shape-controllable nanomaterials. APL Materials, 2020, 8, .	2.2	9

#	Article	IF	CITATIONS
91	Efficient construction of a stable linear gene based on a TNA loop modified primer pair for gene delivery. Chemical Communications, 2020, 56, 9894-9897.	2.2	9
92	NAD ⁺ Cofactor Regeneration by TMBâ€Mediated Horseradishâ€Peroxidase atalyzed Reactions. ChemistrySelect, 2018, 3, 10900-10904.	0.7	8
93	Logic devices based on nucleic acid selfâ€assembly. InformaÄnÃ-Materiály, 2021, 3, 1070-1082.	8.5	8
94	Chemically modified DNA nanostructures for drug delivery. Innovation(China), 2022, 3, 100217.	5.2	8
95	A DNAâ€Based Plasmonic Nanodevice for Cascade Signal Amplification. Angewandte Chemie, 2022, 134, .	1.6	5
96	Surface-Guided Chemical Processes on Self-Assembled DNA Nanostructures. Langmuir, 2018, 34, 14954-14962.	1.6	4
97	Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates. Chemical Research in Chinese Universities, 2020, 36, 171-176.	1.3	4
98	Visualization of the intracellular location and stability of DNA flowers with a label-free fluorescent probe. RSC Advances, 2019, 9, 15205-15209.	1.7	3
99	Bioimaging Based on Nucleic Acid Nanostructures. Chemical Research in Chinese Universities, 2021, 37, 823-828.	1.3	3
100	DNA-based plasmonic nanostructures and their optical and biomedical applications. Nanotechnology, 2021, 32, 402002.	1.3	3
101	Regulation of Biological Functions at the Cell Interface by DNA Nanostructures. Advanced NanoBiomed Research, 2022, 2, 2100126.	1.7	2
102	Experiments in structural DNA nanotechnology: arrays and devices. , 2005, 5592, 71.		1