
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7705514/publications.pdf Version: 2024-02-01

TOM CUDEDO

#	Article	IF	CITATIONS
1	Treatment emergent peripheral neuropathy in the CASSIOPEIA trial. Haematologica, 2022, 107, 1726-1730.	3.5	2
2	ldentification of High-Risk Multiple Myeloma With a Plasma Cell Leukemia-Like Transcriptomic Profile. Journal of Clinical Oncology, 2022, 40, 3132-3150.	1.6	13
3	Fibroblastâ€derived ILâ€33 is dispensable for lymph node homeostasis but critical for CD8 Tâ€cell responses to acute and chronic viral infection. European Journal of Immunology, 2021, 51, 76-90.	2.9	24
4	Intestinal-derived ILCs migrating in lymph increase IFNÎ ³ production in response to Salmonella Typhimurium infection. Mucosal Immunology, 2021, 14, 717-727.	6.0	28
5	Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell, 2021, 28, 653-670.e11.	11.1	31
6	The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape. Nature Immunology, 2021, 22, 769-780.	14.5	107
7	P-080: Single-cell transcriptomic analysis of bone marrow NK cells reveals loss of activated cytotoxic NK cells in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S82-S83.	0.4	0
8	High Levels of Circulating Tumor Cells Are Associated with Increased Bone Marrow Proliferation in Newly Diagnosed Multiple Myeloma Patients. Blood, 2021, 138, 1566-1566.	1.4	0
9	Inflammasome-Primed Myeloid Cells Maintain a Pro-Tumor Microenvironment in Multiple Myeloma. Blood, 2021, 138, 2679-2679.	1.4	1
10	Single-Cell Transcriptomic Analysis Reveals Loss of Activated Bone Marrow NK Cells in Multiple Myeloma Patients Which Associates with Disease Progression in Mice. Blood, 2021, 138, 1578-1578.	1.4	0
11	OAB-008: Identification of high-risk Multiple Myeloma with a plasma cell Leukemia-like transcriptomic profile. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S6.	0.4	0
12	P-069: Inflammasome-primed neutrophils maintain a pro-tumor microenvironment in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S76-S77.	0.4	0
13	Yap1-Driven Intestinal Repair Is Controlled by Group 3 Innate Lymphoid Cells. Cell Reports, 2020, 30, 37-45.e3.	6.4	32
14	Peripheral Neuropathy in the Cassiopeia Study. Blood, 2020, 136, 48-48.	1.4	1
15	The Prognostic Power of Gene Expression Profiling with Cytogentics and Routinely Acquired Serum Markers: SKY92 Combined with Revised ISS. Blood, 2020, 136, 24-25.	1.4	0
16	Frequencies of circulating regulatory TIGIT+CD38+ effector T cells correlate with the course of inflammatory bowel disease. Mucosal Immunology, 2019, 12, 154-163.	6.0	29
17	De novo generation of a functional human thymus from induced pluripotent stem cells. Journal of Allergy and Clinical Immunology, 2019, 144, 1416-1419.e7.	2.9	26
18	Expression of Plet1 controls interstitial migration of murine small intestinal dendritic cells. European Journal of Immunology, 2019, 49, 290-301.	2.9	13

#	Article	IF	CITATIONS
19	Single Cell Transcriptomic Analysis of the Multiple Myeloma Bone Marrow Identifies a Unique Inflammatory Stromal Cell Population Associated with TNF Signaling. Blood, 2019, 134, 690-690.	1.4	1
20	IL-7–dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. Journal of Experimental Medicine, 2018, 215, 1069-1077.	8.5	38
21	ILC2: at home in the thymus. European Journal of Immunology, 2018, 48, 1441-1444.	2.9	6
22	Characterization of Endothelial Cells Associated with Hematopoietic Niche Formation in Humans Identifies IL-33 As an Anabolic Factor. Cell Reports, 2018, 22, 666-678.	6.4	38
23	Review: Innate Lymphoid Cells: Sparking Inflammatory Rheumatic Disease?. Arthritis and Rheumatology, 2017, 69, 885-897.	5.6	13
24	Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation. Cell Reports, 2017, 21, 823-833.	6.4	32
25	Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL. PLoS ONE, 2016, 11, e0151848.	2.5	46
26	Group 3 innate lymphoid cells in tissue damage and graft-versus-host disease pathogenesis. Current Opinion in Hematology, 2016, 23, 410-415.	2.5	8
27	Epidermal Notch1 recruits RORγ+ group 3 innate lymphoid cells to orchestrate normal skin repair. Nature Communications, 2016, 7, 11394.	12.8	76
28	Decreased IL7Rα and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin. Scientific Reports, 2016, 6, 33924.	3.3	20
29	Loss of ILâ€⊋2 inhibits autoantibody formation in collagenâ€induced arthritis in mice. European Journal of Immunology, 2016, 46, 1404-1414.	2.9	30
30	Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. Blood, 2015, 125, 465-469.	1.4	64
31	Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528, 560-564.	27.8	818
32	Tertiary Lymphoid Structures in Rheumatoid Arthritis. American Journal of Pathology, 2015, 185, 1935-1943.	3.8	34
33	Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. Journal of Experimental Medicine, 2015, 212, 1783-1791.	8.5	163
34	A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells. Journal of Immunology, 2015, 195, 4257-4263.	0.8	40
35	Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. Journal of Cell Biology, 2015, 210, 21070IA193.	5.2	0
36	Innate TCRs: single use only. Nature Immunology, 2014, 15, 12-13.	14.5	0

#	Article	IF	CITATIONS
37	Innate protection from graft-versus-host disease. Blood, 2014, 124, 673-675.	1.4	6
38	Characterization of <scp>L</scp> gr5â€positive epithelial cells in the murine thymus. European Journal of Immunology, 2013, 43, 1243-1251.	2.9	3
39	Damage control: RorÎ ³ t+ innate lymphoid cells in tissue regeneration. Current Opinion in Immunology, 2013, 25, 156-160.	5.5	24
40	Identification of a potential physiological precursor of aberrant cells in refractory coeliac disease type II. Gut, 2013, 62, 509-519.	12.1	50
41	Application of tissue engineering to the immune system: development of artificial lymph nodes. Frontiers in Immunology, 2012, 3, 343.	4.8	58
42	Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice. Blood, 2012, 119, 4723-4730.	1.4	59
43	IL-7–producing stromal cells are critical for lymph node remodeling. Blood, 2012, 120, 4675-4683.	1.4	151
44	Innate Lymphoid Cells: Emerging Insights in Development, Lineage Relationships, and Function. Annual Review of Immunology, 2012, 30, 647-675.	21.8	619
45	Functional Differences between Human NKp44â^' and NKp44+ RORC+ Innate Lymphoid Cells. Frontiers in Immunology, 2012, 3, 72.	4.8	148
46	RorÎ ³ t+ Innate Lymphoid Cells in Intestinal Homeostasis and Immunity. Journal of Innate Immunity, 2011, 3, 577-584.	3.8	9
47	Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunology, 2011, 12, 1055-1062.	14.5	1,024
48	Human lymph node development: An inflammatory interaction. Immunology Letters, 2011, 138, 4-6.	2.5	21
49	NK cells can generate from precursors in the adult human liver. European Journal of Immunology, 2011, 41, 3340-3350.	2.9	54
50	Activation and effector functions of human RORC+ innate lymphoid cells. Current Opinion in Immunology, 2011, 23, 361-367.	5.5	9
51	An unexpected role for IL-17 in lymphoid organogenesis. Nature Immunology, 2011, 12, 590-592.	14.5	5
52	Development and Structure of Lymph Nodes in Humans and Mice. , 2011, , 59-74.		1
53	Ablation of Dicer1 in Myeloid Progenitors Leads to Neutrophil Dysplasia and Depletion of Monocytes, Macrophages, and Myeloid Dendritic Cells. Blood, 2011, 118, 43-43.	1.4	0
54	Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. Journal of Experimental Medicine, 2010, 207, 281-290.	8.5	238

#	Article	IF	CITATIONS
55	Thymic cysts originate from Foxn1 positive thymic medullary epithelium. Molecular Immunology, 2010, 47, 1106-1113.	2.2	17
56	Human fetal lymphoid tissue–inducer cells are interleukin 17–producing precursors to RORC+ CD127+ natural killer–like cells. Nature Immunology, 2009, 10, 66-74.	14.5	595
57	Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair?. Nature Reviews Immunology, 2009, 9, 229-234.	22.7	155
58	Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells throughout Development. Cell Stem Cell, 2009, 5, 385-395.	11.1	193
59	Development of human lymph nodes and Peyer's patches. Seminars in Immunology, 2008, 20, 164-170.	5.6	46
60	T cell–independent development and induction of somatic hypermutation in human IgM+IgD+CD27+ B cells. Journal of Experimental Medicine, 2008, 205, 2033-2042.	8.5	97
61	Separation of splenic red and white pulp occurs before birth in a LTαβ-independent manner. Journal of Leukocyte Biology, 2008, 84, 152-161.	3.3	36
62	Keratinocyte Growth Factor Induces Expansion of Murine Peripheral CD4+Foxp3+Regulatory T Cells and Increases Their Thymic Output. Journal of Immunology, 2007, 179, 7424-7430.	0.8	19
63	Towards Regenerative Therapy for Thymic Insufficiency after Hematopoietic Stem Cell Transplantation: Generation of MTS24 Positive Definitive Endoderm from Murine Embryonic Stem Cells Blood, 2007, 110, 2241-2241.	1.4	0
64	Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic cell versus T-cell lineage decision through control of GATA-3 and Spi-B. Blood, 2006, 107, 2446-2452.	1.4	92
65	Development and activation of regulatory T?cells in the human fetus. European Journal of Immunology, 2005, 35, 383-390.	2.9	150
66	Cellular Interactions in Lymph Node Development. Journal of Immunology, 2005, 174, 21-25.	0.8	116
67	Initiation of Cellular Organization in Lymph Nodes Is Regulated by Non-B Cell-Derived Signals and Is Not Dependent on CXC Chemokine Ligand 13. Journal of Immunology, 2004, 173, 4889-4896.	0.8	74
68	Presumptive Lymph Node Organizers are Differentially Represented in Developing Mesenteric and Peripheral Nodes. Journal of Immunology, 2004, 173, 2968-2975.	0.8	112
69	Induction of Secondary and Tertiary Lymphoid Structures in the Skin. Immunity, 2004, 21, 655-667.	14.3	133
70	Role of chemokines in the development of secondary and tertiary lymphoid tissues. Seminars in Immunology, 2003, 15, 243-248.	5.6	50
71	The role of CD45+CD4+CD3- cells in lymphoid organ development. Immunological Reviews, 2002, 189, 41-50.	6.0	77
72	The Fetal Liver Counterpart of Adult Common Lymphoid Progenitors Gives Rise to All Lymphoid Lineages, CD45+CD4+CD3â^' Cells, As Well As Macrophages. Journal of Immunology, 2001, 166, 6593-6601.	0.8	234

#	Article	IF	CITATIONS
73	Regulation of Peripheral Lymph Node Genesis by the Tumor Necrosis Factor Family Member Trance. Journal of Experimental Medicine, 2000, 192, 1467-1478.	8.5	249