Shinji Yuasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7704793/publications.pdf

Version: 2024-02-01

395 19,148 60 129
papers citations h-index g-index

400 400 400 8543 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Enhancing the interfacial perpendicular magnetic anisotropy and tunnel magnetoresistance by inserting an ultrathin LiF layer at an Fe/MgO interface. NPG Asia Materials, 2022, 14 , .	7.9	10
2	Binding events through the mutual synchronization of spintronic nano-neurons. Nature Communications, 2022, 13, 883.	12.8	18
3	Perpendicular magnetic anisotropy and its voltage control in MgO/CoFeB/Mo/CoFeB/MgO junctions. Journal Physics D: Applied Physics, 2022, 55, 275003.	2.8	3
4	Improvement in perpendicular magnetic anisotropy and its voltage control efficiency in CoFeB/MgO tunnel junctions with Ta/Mo layered adhesion structures. Journal of Applied Physics, 2022, 131, 213901.	2.5	1
5	Developments in voltage-controlled subnanosecond magnetization switching. Journal of Magnetism and Magnetic Materials, 2022, 560, 169637.	2.3	15
6	Perpendicular magnetic anisotropy and its electrical control in FeNiB ultrathin films. AIP Advances, 2021, 11, .	1.3	2
7	Reservoir Computing Leveraging the Transient Non-linear Dynamics of Spin-Torque Nano-Oscillators. Natural Computing Series, 2021, , 307-329.	2.2	4
8	Spin–torque dynamics for noise reduction in vortex-based sensors. Applied Physics Letters, 2021, 118, .	3.3	6
9	Recent progress in random number generator using voltage pulse-induced switching of nano-magnet: A perspective. APL Materials, 2021, 9, .	5.1	9
10	Control of the stochastic response of magnetization dynamics in spin-torque oscillator through radio-frequency magnetic fields. Scientific Reports, 2021, 11, 16285.	3.3	5
11	Perpendicular magnetic anisotropy and its voltage control in MgO/CoFeB/MgO junctions with atomically thin Ta adhesion layers. Acta Materialia, 2021, 216, 117097.	7.9	19
12	Giant charge-to-spin conversion in ferromagnet via spin-orbit coupling. Nature Communications, 2021, 12, 6254.	12.8	20
13	Superimposed contributions to two-terminal and nonlocal spin signals in lateral spin-transport devices. Physical Review B, 2021, 104, .	3.2	3
14	Large voltage-induced coercivity change in Pt/Co/CoO/amorphous TiOx structure and heavy metal insertion effect. Scientific Reports, 2021, 11, 21448.	3.3	5
15	Chaos in spin-torque oscillator with feedback circuit. Physical Review Research, 2021, 3, .	3.6	4
16	Voltage-Driven Magnetization Switching Controlled by Microwave Electric Field Pumping. Nano Letters, 2020, 20, 6012-6017.	9.1	14
17	Generation of charge current from magnetization oscillation via the inverse of voltage-controlled magnetic anisotropy effect. Science Advances, 2020, 6, eabc2618.	10.3	6
18	Influence of flicker noise and nonlinearity on the frequency spectrum of spin torque nano-oscillators. Scientific Reports, 2020, 10, 13116.	3.3	4

#	Article	IF	Citations
19	Spin-orbit torque generated from perpendicularly magnetized Co/Ni multilayers. Physical Review B, 2020, 101, .	3.2	16
20	Control of the magnetic domain of Pt/Co/Ru/MgO multilayer: Effect of Co thickness and Ru insertion. AIP Advances, 2020, 10 , .	1.3	4
21	Analysis of surface acoustic wave induced spin resonance of a spin accumulation. Physical Review B, 2020, 101, .	3.2	1
22	Fully epitaxial giant magnetoresistive devices with half-metallic Heusler alloy fabricated on poly-crystalline electrode using three-dimensional integration technology. Acta Materialia, 2020, 200, 1038-1045.	7.9	11
23	Voltage-Driven Magnetization Switching Using Inverse-Bias Schemes. Physical Review Applied, 2020, 13, .	3.8	18
24	The 64th Annual Conference on Magnetism and Magnetic Materials. AIP Advances, 2020, 10, .	1.3	1
25	Voltage-controlled magnetic anisotropy in an ultrathin Ir-doped Fe layer with a CoFe termination layer. APL Materials, 2020, 8, .	5.1	40
26	Role of non-linear data processing on speech recognition task in the framework of reservoir computing. Scientific Reports, 2020, 10, 328.	3. 3	48
27	Temperature dependence of higher-order magnetic anisotropy constants and voltage-controlled magnetic anisotropy effect in a Cr/Fe/MgO junction. Japanese Journal of Applied Physics, 2020, 59, 010901.	1.5	6
28	Large Spin-Orbit-Torque Efficiency Generated by Spin Hall Effect in Paramagnetic Co - Ni - B Alloys. Physical Review Applied, 2020, 14, .	3.8	13
29	Structural and magneto-transport properties of lattice-mismatched epitaxial Fe/SrO/MgO/Fe magnetic tunnel junctions. Japanese Journal of Applied Physics, 2020, 59, 103001.	1.5	0
30	High frequency voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Applied Physics Letters, $2019,115,072401.$	3.3	1
31	Evaluation of higher order magnetic anisotropy in a perpendicularly magnetized epitaxial ultrathin Fe layer and its applied voltage dependence. Japanese Journal of Applied Physics, 2019, 58, 090905.	1.5	10
32	Tunnel magnetoresistance angular and bias dependence enabling tuneable wireless communication. Scientific Reports, 2019, 9, 9541.	3.3	7
33	Tunnel spin polarization of Fe/MgO/Si contacts reaching 90% with increasing MgO thickness. Physical Review B, 2019, 99, .	3.2	13
34	Fully epitaxial magnetic tunnel junction on a silicon wafer. Applied Physics Letters, 2019, 115, .	3.3	12
35	CoFeB/MgO/CoFeB magnetic tunnel junctions prepared by layer-by-layer growth of naturally oxidized MgO. Applied Physics Express, 2019, 12, 103003.	2.4	1
36	High-speed write error rate evaluation of a voltage-torque magnetic random access memory cell. Japanese Journal of Applied Physics, 2019, 58, 060905.	1.5	1

#	Article	IF	CITATIONS
37	Voltage-induced coercivity change in Co film grown on Cr ₂ O ₃ barrier. Japanese Journal of Applied Physics, 2019, 58, 100911.	1.5	3
38	Temporal Pattern Recognition with Delayed-Feedback Spin-Torque Nano-Oscillators. Physical Review Applied, 2019, 12, .	3.8	45
39	Surface smoothing process for high-performance MgO-based magnetic tunnel junctions. Applied Physics Express, 2019, 12, 023002.	2.4	15
40	Low offset frequency <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mo>/<td>o>3.2nml:n</td><td>ni∕≸</td></mml:mo></mml:mrow></mml:math>	o> 3.2 nml:n	ni∕≸
41	Hanle spin precession in a two-terminal lateral spin valve. Applied Physics Letters, 2019, 114, 242401. Tunneling Magnetoresistance and Spin-Dependent Diode Performance in Fully Epitaxial Magnetic	3.3	10
42	Tunnel Junctions With a Rocksalt <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Zn</mml:mi><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mi>Mg</mml:mi><rmathvariant="normal">O</rmathvariant="normal"></mml:mrow></mml:math> Bilayer Tunnel Barrier. Physical Review	mml:mi	9
43	Applied, 2019, 11, . Mutual Synchronization of Spin-Torque Nano-Oscillators Via Oersted Magnetic Fields Created by Waveguides. Physical Review Applied, 2019, 11, .	3.8	11
44	Microscopic origin of large perpendicular magnetic anisotropy in an Felr/MgO system. Physical Review B, 2019, 99, .	3.2	4
45	Recent Progress in the Voltage-Controlled Magnetic Anisotropy Effect and the Challenges Faced in Developing Voltage-Torque MRAM. Micromachines, 2019, 10, 327.	2.9	96
46	Physical reservoir computing based on spin torque oscillator with forced synchronization. Applied Physics Letters, 2019, 114, .	3.3	106
47	Quantification of Spin Drift in Devices with a Heavily Doped <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Si</mml:mi></mml:math> Channel. Physical Review Applied, 2019, 11, .	3.8	12
48	Development of "spin diceâ€Â— A Scalable Random Number Generator Based on Spin-Torque Switching. Spin, 2019, 09, 1940009.	1.3	2
49	Microwave magnetic field modulation of spin torque oscillator based on perpendicular magnetic tunnel junctions. Scientific Reports, 2019, 9, 19091.	3.3	4
50	Proximity exchange coupling in a Fe/MgO/Si tunnel contact detected by the inverted Hanle effect. Physical Review B, 2019, 100, .	3.2	5
51	Microwave amplification in a magnetic tunnel junction induced by heat-to-spin conversion at the nanoscale. Nature Nanotechnology, 2019, 14, 40-43.	31.5	26
52	Perpendicular magnetic anisotropy and its electric-field-induced change at metal-dielectric interfaces. Journal Physics D: Applied Physics, 2019, 52, 063001.	2.8	47
53	Brownian motion of skyrmion bubbles and its control by voltage applications. Applied Physics Letters, 2019, 114, .	3.3	81
54	Write-Error Reduction of Voltage-Torque-Driven Magnetization Switching by aÂControlled Voltage Pulse. Physical Review Applied, 2019, 11, .	3.8	32

#	Article	IF	Citations
55	Reservoir computing with the frequency, phase, and amplitude of spin-torque nano-oscillators. Applied Physics Letters, 2019, 114, .	3.3	81
56	Improvement of write error rate in voltage-driven magnetization switching. Journal Physics D: Applied Physics, 2019, 52, 164001.	2.8	36
57	10.1063/1.5070101.2.,2019,,.		0
58	Tunnel Magnetoresistance Effect. Journal of the Institute of Electrical Engineers of Japan, 2019, 139, 595-600.	0.0	0
59	Development of Three-Dimensional Integration Technology for Magnetic Random Access Memories. Journal of Japan Institute of Electronics Packaging, 2019, 22, 495-500.	0.1	0
60	Enhancement in the interfacial perpendicular magnetic anisotropy and the voltage-controlled magnetic anisotropy by heavy metal doping at the Fe/MgO interface. APL Materials, 2018, 6, .	5.1	53
61	Neural-like computing with populations of superparamagnetic basis functions. Nature Communications, 2018, 9, 1533.	12.8	139
62	Giant magnetoresistance in perpendicularly magnetized synthetic antiferromagnetic coupling with Ir spacer. AIP Advances, $2018, 8, .$	1.3	3
63	Spin-transfer torque induced by the spin anomalous Hall effect. Nature Electronics, 2018, 1, 120-123.	26.0	108
64	Voltage-Induced Precessional Switching at Zero-Bias Magnetic Field in a Conically Magnetized Free Layer. Physical Review Applied, 2018, 9, .	3.8	21
65	Effect of external magnetic field on locking range of spintronic feedback nano oscillator. AIP Advances, 2018, 8, .	1.3	3
66	Vector network analyzer ferromagnetic resonance spectrometer with field differential detection. Review of Scientific Instruments, 2018, 89, 053901.	1.3	16
67	Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier. Japanese Journal of Applied Physics, 2018, 57, 04FN04.	1.5	6
68	Reduction in the write error rate of voltage-induced dynamic magnetization switching using the reverse bias method. Japanese Journal of Applied Physics, 2018, 57, 040311.	1.5	18
69	Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions. AlP Advances, 2018, 8 , .	1.3	8
70	Microwave Neural Processing and Broadcasting with Spintronic Nano-Oscillators., 2018,,.		0
71	Fabrication technology of low-propagation-loss plasmonic waveguide containing a ferromagnetic metal, 2018,,.		2
72	Deterministic Magnetization Switching by Voltage Control of Magnetic Anisotropy and Dzyaloshinskii-Moriya Interaction under an In-Plane Magnetic Field. Physical Review Applied, 2018, 10, .	3.8	6

#	Article	IF	Citations
73	Study of voltage-controlled perpendicular magnetic anisotropy in Ta/ FeB/MgO and W/FeB/MgO nanowires by the Hall effect measurements , 2018, , .		О
74	Low frequency noise in vortex spin torque nano-oscillators., 2018,,.		0
7 5	Voltage Controlled Magnetic Tunnel Junction Based 3Dcrosspoint Memory With Step Shaped Pulse for Reliable Write Operation. , 2018, , .		О
76	Nonlinear Electrical Spin Conversion in a Biased Ferromagnetic Tunnel Contact. Physical Review Applied, 2018, 10, .	3.8	21
77	Brain-Inspired Computing with Spintronics Devices. , 2018, , .		1
78	Evaluation of memory capacity of spin torque oscillator for recurrent neural networks. Japanese Journal of Applied Physics, 2018, 57, 120307.	1.5	35
79	Vowel recognition with four coupled spin-torque nano-oscillators. Nature, 2018, 563, 230-234.	27.8	356
80	Scaling up electrically synchronized spin torque oscillator networks. Scientific Reports, 2018, 8, 13475.	3.3	49
81	Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction. Applied Physics Express, 2018, 11, 053001.	2.4	23
82	Accurate calculation and shaping of the voltage pulse waveform applied to a voltage-controlled magnetic random access memory cell. Japanese Journal of Applied Physics, 2018, 57, 073002.	1.5	9
83	Self-Injection Locking of a Spin Torque Nano-Oscillator to Magnetic Field Feedback. Physical Review Applied, 2018, 10, .	3.8	11
84	Effect of Electric Field on the Exchange-Stiffness Constant in a <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Co</mml:mi><mml:mn>12</mml:mn></mml:msub><mml:msub><mm and="" mathvariant="normal">B<mml:mn>16</mml:mn></mm></mml:msub></mml:math>	l:msxFe <td>nmd:mi><mml< td=""></mml<></td>	nm d: mi> <mml< td=""></mml<>
85	Disk-Shaped Nanomagnet 65 nm in Diameter. Physical Review Applied, 2018, 10, . Thermally Induced Precession-Orbit Transition of Magnetization in Voltage-Driven Magnetization Switching. Physical Review Applied, 2018, 10, .	3.8	29
86	Materials for spin-transfer-torque magnetoresistive random-access memory. MRS Bulletin, 2018, 43, 352-357.	3.5	49
87	Epitaxial growth of MgO/Ga ₂ O ₃ heterostructure and its band alignment studied by X-ray photoemission spectroscopy. Japanese Journal of Applied Physics, 2018, 57, 070304.	1.5	9
88	Very strong antiferromagnetic interlayer exchange coupling with iridium spacer layer for perpendicular magnetic tunnel junctions. Applied Physics Letters, 2017, 110, .	3.3	65
89	Three-dimensional integration technology of magnetic tunnel junctions for magnetoresistive random access memory application. Applied Physics Express, 2017, 10, 063002.	2.4	10
90	Extended X-ray absorption fine structure analysis of voltage-induced effects in the interfacial atomic structure of Fe/Pt/MgO. Applied Physics Express, 2017, 10, 063006.	2.4	2

#	Article	IF	CITATIONS
91	Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme. Nature Communications, 2017, 8, 15825.	12.8	85
92	Voltage-controlled magnetic tunnel junction based MRAM for replacing high density DRAM circuits corresponding to 2X nm generation. , 2017, , .		3
93	Investigation on the formation process of single-crystalline GaO _{<i>x</i>} barrier in Fe/GaO _{<i>x</i>} /MgO/Fe magnetic tunnel junctions. Journal Physics D: Applied Physics, 2017, 50, 435001.	2.8	9
94	Reduction in write error rate of voltage-driven dynamic magnetization switching by improving thermal stability factor. Applied Physics Letters, 2017, 111, .	3.3	60
95	Driven energy transfer between coupled modes in spin-torque oscillators. Physical Review B, 2017, 95, .	3.2	3
96	Enhancement of perpendicular magnetic anisotropy and its electric field-induced change through interface engineering in Cr/Fe/MgO. Scientific Reports, 2017, 7, 5993.	3.3	46
97	Neuromorphic computing with nanoscale spintronic oscillators. Nature, 2017, 547, 428-431.	27.8	893
98	Highly efficient voltage control of spin and enhanced interfacial perpendicular magnetic anisotropy in iridium-doped Fe/MgO magnetic tunnel junctions. NPG Asia Materials, 2017, 9, e451-e451.	7.9	84
99	Measurement of shot noise in magnetic tunnel junction and its utilization for accurate system calibration. Journal of Applied Physics, 2017, 122, .	2.5	4
100	Low-Energy Truly Random Number Generation with Superparamagnetic Tunnel Junctions for Unconventional Computing. Physical Review Applied, 2017, 8, .	3.8	106
101	Characterization of the magnetic moments of ultrathin Fe film in an external electric field via high-precision X-ray magnetic circular dichroism spectroscopy. Japanese Journal of Applied Physics, 2017, 56, 060304.	1.5	8
102	Efficiency of Spin-Transfer-Torque Switching and Thermal-Stability Factor in a Spin-Valve Nanopillar with First- and Second-Order Uniaxial Magnetic Anisotropies. Physical Review Applied, 2017, 7, .	3.8	11
103	Physical Origin and Theoretical Limit of the Phase Stability of a Spin-Torque Oscillator Stabilized by a Phase-Locked Loop. Physical Review Applied, 2017, 7, .	3.8	2
104	Voltage controlled interfacial magnetism through platinum orbits. Nature Communications, 2017, 8, 15848.	12.8	128
105	Neuromorphic computing through time-multiplexing with a spin-torque nano-oscillator. , 2017, IEDM 2017, .		16
106	Integer, Fractional, and Sideband Injection Locking of a Spintronic Feedback Nano-Oscillator to a Microwave Signal. Physical Review Applied, 2017, 8, .	3.8	16
107	Giant Spin Accumulation in Silicon Nonlocal Spin-Transport Devices. Physical Review Applied, 2017, 8, .	3.8	47
108	Photonic integration of plasmonic Magneto-optical waveguide and Si nanowire waveguide., 2017,,.		1

#	Article	IF	Citations
109	Effect of MgO Underlying Layer on the Growth of GaOx Tunnel Barrier in Epitaxial Fe/GaOx/(MgO)/Fe Magnetic Tunnel Junction Structure. Sensors, 2017, 17, 2424.	3.8	5
110	Spin signals in Si non-local transport devices with giant spin accumulation. , 2017, , .		1
111	Systematic study of surface morphology, photoluminescence efficiency, and spin-detection sensitivity in (110)-oriented GaAs/AlGaAs quantum wells. Japanese Journal of Applied Physics, 2016, 55, 113001.	1.5	3
112	Voltage-Controlled Magnetic Anisotropy in an Ultrathin Fe Layer Sandwiched Between Cr and Mgo Layers. , $2016,$, .		1
113	Evaluation of write error rate for voltage-driven dynamic magnetization switching in magnetic tunnel junctions with perpendicular magnetization. Applied Physics Express, 2016, 9, 013001.	2.4	87
114	Self-Injection Locking of a Vortex Spin Torque Oscillator by Delayed Feedback. Scientific Reports, 2016, 6, 26849.	3.3	40
115	Coherent microwave generation by spintronic feedback oscillator. Scientific Reports, 2016, 6, 30747.	3.3	31
116	Temperature dependence of spin-orbit torques in W/CoFeB bilayers. Applied Physics Letters, 2016, 109, .	3.3	25
117	Microwave emission power exceeding 10 <i>μ</i> W in spin torque vortex oscillator. Applied Physics Letters, 2016, 109, .	3.3	51
118	Spin-torque diode with tunable sensitivity and bandwidth by out-of-plane magnetic field. Applied Physics Letters, 2016, 108, 232407.	3.3	7
119	Diameter dependence of emission power in MgO-based nano-pillar spin-torque oscillators. Applied Physics Letters, 2016, 108, .	3.3	12
120	Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop. Scientific Reports, 2016, 5, 18134.	3.3	51
121	Spin-wave eigenmodes in single disk-shaped FeB nanomagnet. Physical Review B, 2016, 94, .	3.2	9
122	A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Scientific Reports, 2016, 6, 31510.	3.3	186
123	Novel voltage controlled MRAM (VCM) with fast read/write circuits for ultra large last level cache. , $2016, \ldots$		21
124	The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001). Journal of Applied Physics, 2016, 120, 085303.	2.5	8
125	Growth and magnetic properties of ultrathin epitaxial FeO films and Fe/FeO bilayers on MgO(001). Applied Physics Letters, 2016, 108, .	3.3	14
126	Analysis of phase noise in a spin torque oscillator stabilized by phase locked loop. Applied Physics Express, 2016, 9, 053005.	2.4	10

#	Article	IF	Citations
127	Magnetic field angle dependence of out-of-plane precession in spin torque oscillators having an in-plane magnetized free layer and a perpendicularly magnetized reference layer. Applied Physics Express, 2016, 9, 053006.	2.4	13
128	Suppression of spin transport in ferromagnet/oxide/semiconductor junctions by magnetic impurities in the tunnel barrier. Applied Physics Express, 2016, 9, 103001.	2.4	0
129	High Magnetoresistance in Fully Epitaxial Magnetic Tunnel Junctions with a Semiconducting <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mi>GaO</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>nml:mi>x<!--</td--><td> mml:mi></td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nml:mi>x </td <td> mml:mi></td>	 mml:mi>
130	Spin-Torque Induced Oscillation of a Magnetoresistive Nanopillar with a Conically Magnetized Free Layer and an In-Plane Magnetized Reference Layer. Journal of the Physical Society of Japan, 2016, 85, 063802.	1.6	3
131	Large Voltage-Induced Changes in the Perpendicular Magnetic Anisotropy of an MgO-Based Tunnel Junction with an Ultrathin Fe Layer. Physical Review Applied, 2016, 5, .	3.8	141
132	Twist in the bias dependence of spin torques in magnetic tunnel junctions. Physical Review B, 2016, 93, .	3.2	5
133	Influence of output power of a spin torque oscillator on phase locked loop operation. Japanese Journal of Applied Physics, 2016, 55, 093003.	1.5	3
134	Controlling the phase locking of stochastic magnetic bits for ultra-low power computation. Scientific Reports, 2016, 6, 30535.	3.3	32
135	Microwave detection based on magnetoresistance effect in spintronic devices. , 2016, , .		1
136	Multi-bits memory cell using degenerated magnetic states in a synthetic antiferromagnetic reference layer. Journal of Magnetism and Magnetic Materials, 2016, 400, 370-373.	2.3	0
137	Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme. Nature Nanotechnology, 2016, 11, 360-364.	31.5	7 5
138	Perpendicular magnetic tunnel junction with enhanced anisotropy obtained by utilizing an Ir/Co interface. Applied Physics Express, 2016, 9, 013003.	2.4	22
139	Field angle dependence of voltage-induced ferromagnetic resonance under DC bias voltage. Journal of Magnetism and Magnetic Materials, 2016, 400, 159-162.	2.3	8
140	Relative strength of thermal and electrical spin currents in a ferromagnetic tunnel contact on a semiconductor. Physical Review B, 2015, 92, .	3.2	5
141	Nonlinear spin transport in a rectifying ferromagnet/semiconductor Schottky contact. Physical Review B, 2015, 92, .	3.2	5
142	Theoretical analysis of thermally activated spin-transfer-torque switching in a conically magnetized nanomagnet. Physical Review B, 2015, 92, .	3.2	14
143	Critical damping constant of a spin torque oscillator with a perpendicularly magnetized free layer and an in-plane magnetized reference layer. Physical Review B, 2015, 92, .	3.2	6
144	Understanding of Phase Noise Squeezing Under Fractional Synchronization of a Nonlinear Spin Transfer Vortex Oscillator. Physical Review Letters, 2015, 115, 017201.	7.8	50

#	Article	IF	CITATIONS
145	Publisher's Note: Energy dispersion of tunnel spin polarization extracted from thermal and electrical spin currents [Phys. Rev. B91, 155305 (2015)]. Physical Review B, 2015, 91, .	3.2	O
146	Increased magnetic damping of a single domain wall and adjacent magnetic domains detected by spin torque diode in a nanostripe. Applied Physics Letters, 2015, 107, .	3.3	6
147	Underlayer material influence on electric-field controlled perpendicular magnetic anisotropy in CoFeB/MgO magnetic tunnel junctions. Physical Review B, 2015, 91, .	3.2	83
148	Energy dispersion of tunnel spin polarization extracted from thermal and electrical spin currents. Physical Review B, 2015, 91, .	3.2	6
149	Spin-transfer-torque switching in a spin-valve nanopillar with a conically magnetized free layer. Applied Physics Express, 2015, 8, 063007.	2.4	27
150	Energy dispersion of tunnel spin polarization extracted from thermal and electrical spin currents versus bias voltage., 2015,,.		0
151	Spin dice (physical random number generator using spin torque switching) and its thermal response. , 2015, , .		4
152	Magnetic Stochastic Oscillators: Noise-Induced Synchronization to Underthreshold Excitation and Comprehensive Compact Model. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	18
153	Effect of Mn impurities on the 3-terminal Hanle signals in ferromagnet/oxide tunnel contacts on a semiconductor. , 2015, , .		0
154	Spin-torque-induced oscillation at zero bias field in a magnetoresistive nanopillar with a free layer with first- and second-order uniaxial anisotropy. Applied Physics Express, 2015, 8, 083005.	2.4	16
155	Growth of perpendicularly magnetized thin films on a polymer buffer and voltage-induced change of magnetic anisotropy at the MgO CoFeB interface. AIP Advances, 2015, 5, 067132.	1.3	6
156	Perpendicular magnetic anisotropy of Ir/CoFeB/MgO trilayer system tuned by electric fields. Applied Physics Express, 2015, 8, 053003.	2.4	73
157	Fabrication of Ge-based light-emitting diodes with a ferromagnetic metal/insulator tunnel contact. Japanese Journal of Applied Physics, 2015, 54, 04DM02.	1.5	2
158	Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal. Optics Express, 2015, 23, 11537.	3 . 4	34
159	Long-distance propagation of a surface plasmon on the surface of a ferromagnetic metal. Optics Express, 2015, 23, 12834.	3.4	14
160	Perpendicular magnetic tunnel junctions with strong antiferromagnetic interlayer exchange coupling at first oscillation peak. Applied Physics Express, 2015, 8, 083003.	2.4	53
161	Interface engineering using an Fe oxide insertion layer for growing a metastable bcc-Co on MgO(001). Applied Physics Letters, 2015, 106, 022405.	3.3	6
162	Three-Terminal Device for Realizing a Voltage-Driven Spin Transistor. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	0

#	Article	IF	CITATIONS
163	Growth condition dependence of photoluminescence polarization in (100) GaAs/AlGaAs quantum wells at room temperature. Journal of Applied Physics, 2015, 118, 083901.	2.5	2
164	Gigantic transverse x-ray magnetic circular dichroism in ultrathin Co in Au/Co/Au(001). Journal of Physics: Conference Series, 2014, 502, 012002.	0.4	4
165	Spin-torque diode spectrum of a spin valve with a synthetic antiferromagnetic reference layer. Japanese Journal of Applied Physics, 2014, 53, 123001.	1.5	6
166	Discontinuous frequency drop in spin torque oscillator with a perpendicularly magnetized FeB free layer. Japanese Journal of Applied Physics, 2014, 53, 060307.	1.5	6
167	Damping parameter and interfacial perpendicular magnetic anisotropy of FeB nanopillar sandwiched between MgO barrier and cap layers in magnetic tunnel junctions. Applied Physics Express, 2014, 7, 033004.	2.4	28
168	High-output microwave detector using voltage-induced ferromagnetic resonance. Applied Physics Letters, 2014, 105, 192408.	3.3	23
169	Ultrahigh Sensitivity Ferromagnetic Resonance Measurement Based on Microwave Interferometer. IEEE Magnetics Letters, 2014, 5, 1-4. Large spin accumulation voltages in epitaxial mml:math	1.1	19
170	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">M<mml:msub><mml:mi mathvariant="normal">n<mml:mn>5</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">G<mml:msub><mml:mi< td=""><td>3.2</td><td>43</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	3.2	43
171	mathvariant="normal">e <mml:mn>3</mml:mn> contacts Leak current estimated from the shot noise in magnetic tunneling junctions. Applied Physics Letters, 2014, 105, 042405.	3.3	3
172	Controlling the chirality and polarity of vortices in magnetic tunnel junctions. Applied Physics Letters, 2014, 105, .	3.3	28
173	Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer. Applied Physics Letters, 2014, 105, .	3.3	35
174	Noise-Enhanced Synchronization of Stochastic Magnetic Oscillators. Physical Review Applied, 2014, 2, .	3.8	48
175	Nonlinear Behavior and Mode Coupling in Spin-Transfer Nano-Oscillators. Physical Review Applied, 2014, 2, .	3.8	28
176	Localized spâ€"d exchange interaction in ferromagnetic Ga _{1â^'<i>x</i>×} Mn _{<i>x</i>} As observed by magnetic circular dichroism spectroscopy of <i>L</i> As observed by magnetic circular dichroism spectroscopy of <i>L</i>	2.8	12
177	Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited). Journal of Applied Physics, 2014, 115, .	2.5	98
178	Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer. Journal of Applied Physics, 2014, 115, 17C740.	2.5	16
179	High Q factor over 3000 due to out-of-plane precession in nano-contact spin-torque oscillator based on magnetic tunnel junctions. Applied Physics Express, 2014, 7, 023003.	2.4	52
180	Highly sensitive nanoscale spin-torque diode. Nature Materials, 2014, 13, 50-56.	27. 5	228

#	Article	IF	Citations
181	Voltage tuning of thermal spin current in ferromagnetic tunnel contacts to semiconductors. Nature Materials, 2014, 13, 360-366.	27.5	40
182	Anomalous scaling of spin accumulation in ferromagnetic tunnel devices with silicon and germanium. Physical Review B, 2014, 89, .	3.2	43
183	Spin dice: A scalable truly random number generator based on spintronics. Applied Physics Express, 2014, 7, 083001.	2.4	174
184	Spintronic nano-oscillators: Towards nanoscale and tunable frequency devices. , 2014, , .		9
185	High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Applied Physics Express, 2014, 7, 063009.	2.4	58
186	Bias field angle dependence of the self-oscillation of spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer. Applied Physics Express, 2014, 7, 063005.	2.4	19
187	Magnetization switching assisted by high-frequency-voltage-induced ferromagnetic resonance. Applied Physics Express, 2014, 7, 073002.	2.4	25
188	Response to noise of a vortex based spin transfer nano-oscillator. Physical Review B, 2014, 89, .	3.2	74
189	MgO overlayer thickness dependence of perpendicular magnetic anisotropy in CoFeB thin films. Journal of the Korean Physical Society, 2013, 62, 1461-1464.	0.7	21
190	Future prospects of MRAM technologies. , 2013, , .		42
191	Parametric excitation of magnetic vortex gyrations in spin-torque nano-oscillators. Physical Review B, 2013, 88, .	3.2	23
192	Large Emission Power over 2 µW with High <i>Q</i> Factor Obtained from Nanocontact Magnetic-Tunnel-Junction-Based Spin Torque Oscillator. Applied Physics Express, 2013, 6, 113005.	2.4	72
193	Enhanced Tunnel Magnetoresistance Effect in an Epitaxial Magnetic Tunnel Junction with a Hybrid Î ³ -Fe ₂ O ₃ /MgO Barrier. Applied Physics Express, 2013, 6, 053005.	2.4	11
194	Epitaxial growth of ferromagnetic semiconductor Ga1-xMnxAs film on Ge(001) substrate. Thin Solid Films, 2013, 536, 323-326. Crystal-induced anisotropy of spin accumulation in Si/MgO/Fe and Si/Ak mmkmath	1.8	4
195	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>/ferromagnet tunnel devices. Physical Review B. 2013.</mml:math 	3.2	6
196	Radio-frequency amplification property of the MgO-based magnetic tunnel junction using field-induced ferromagnetic resonance. Applied Physics Letters, 2013, 102, 162409.	3.3	6
197	High domain wall velocities via spin transfer torque using vertical current injection. Scientific Reports, 2013, 3, 1829.	3.3	39
198	Voltage-Induced Magnetic Anisotropy Changes in an Ultrathin FeB Layer Sandwiched between Two MgO Layers. Applied Physics Express, 2013, 6, 073005.	2.4	52

#	Article	IF	CITATIONS
199	Magnetotransport properties in epitaxial Fe3O4(001) thin films with current perpendicular to the plane geometry. Journal of Applied Physics, 2013, 113, 17B104.	2.5	6
200	Ultralow-Voltage Spin-Transfer Switching in Perpendicularly Magnetized Magnetic Tunnel Junctions with Synthetic Antiferromagnetic Reference Layer. Applied Physics Express, 2013, 6, 113006.	2.4	67
201	Thermal creation of a spin current by Seebeck spin tunneling. , 2013, , .		0
202	Effective Creation of Spin Polarization in p-Type Ge from a Fe/GeO ₂ Tunnel Contact. Japanese Journal of Applied Physics, 2013, 52, 04CM01.	1.5	9
203	Characterization of Ultrathin Fe–Co Layer Grown on Amorphous Co–Fe–B by In situ Reflective High-Energy Electron Diffraction. Applied Physics Express, 2013, 6, 063003.	2.4	4
204	Effect of MgO Cap Layer on Gilbert Damping of FeB Electrode Layer in MgO-Based Magnetic Tunnel Junctions. Applied Physics Express, 2013, 6, 073002.	2.4	49
205	Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks. Applied Physics Letters, 2013, 103, .	3.3	14
206	Spin-Torque Oscillator Based on Magnetic Tunnel Junction with a Perpendicularly Magnetized Free Layer and In-Plane Magnetized Polarizer. Applied Physics Express, 2013, 6, 103003.	2.4	144
207	Growth of a High-Quality Ultrathin Fe(001) Layer on MgO(001) by Insertion of an Ultrathin Î ³ -Fe ₂ O ₃ Layer. Applied Physics Express, 2013, 6, 113004.	2.4	9
208	Nonlinear thermal effect on sub-gigahertz ferromagnetic resonance in magnetic tunnel junction. Applied Physics Letters, 2013, 103, .	3.3	3
209	Composition Dependence of Perpendicular Magnetic Anisotropy in Ta/Co _x Fe _{80-x} B ₂₀ /MgO/Ta (x=0, 10, 60) Multilayers. Journal of Magnetics, 2013, 18, 5-8.	0.4	8
210	Spin Accumulation and Spin Lifetime in p-Type Germanium at Room Temperature. Applied Physics Express, 2012, 5, 053004.	2.4	29
211	Spin Accumulation in Nondegenerate and Heavily Doped p-Type Germanium. Applied Physics Express, 2012, 5, 023003.	2.4	25
212	Spin-torque diode spectrum of ferromagnetically coupled (FeB/CoFe)/Ru/(CoFe/FeB) synthetic free layer. Journal of Applied Physics, 2012, 111, 07C917.	2.5	6
213	Quasi-omnidirectional electrical spectrometer for studying spin dynamics in magnetic tunnel junctions. Review of Scientific Instruments, 2012, 83, 024710. Anisotropy of spin polarization and spin accumulation in Si/Al <mml:math< td=""><td>1.3</td><td>4</td></mml:math<>	1.3	4
214	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub> O <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub><</mml:math>	3.2	20
215	86, . Enhancement of perpendicular magnetic anisotropy in FeB free layers using a thin MgO cap layer. Journal of Applied Physics, 2012, 111, .	2.5	85
216	Thermal spin current and magnetothermopower by Seebeck spin tunneling. Physical Review B, 2012, 85, .	3.2	37

#	Article	IF	Citations
217	Optical Isolator Utilizing Surface Plasmons. Materials, 2012, 5, 857-871.	2.9	29
218	Electrical spin injection in p-type Si using Fe/MgO contacts. Proceedings of SPIE, 2012, , .	0.8	14
219	Spin Torque Diode Spectroscopy of Quantized Spin Wave Excited in a Magnetic Tunnel Junction. IEEE Transactions on Magnetics, 2012, 48, 2816-2819.	2.1	6
220	Statistical Variance in Switching Probability of Spin-Torque Switching in MgO-MTJ. IEEE Transactions on Magnetics, 2012, 48, 4344-4346.	2.1	3
221	Pulse voltage-induced dynamic magnetization switching in magnetic tunneling junctions with high resistance-area product. Applied Physics Letters, 2012, 101, .	3.3	77
222	Low-frequency and shot noises in CoFeB/MgO/CoFeB magnetic tunneling junctions. Physical Review B, 2012, 86, .	3.2	23
223	Enhancement of the transverse non-reciprocal magneto-optical effect. Journal of Applied Physics, 2012, 111, 023103.	2.5	25
224	Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metalÂlayer. Nature Physics, 2012, 8, 491-496.	16.7	223
225	Temperature dependence of microwave voltage emission associated to spin-transfer induced vortex oscillation in magnetic tunnel junction. Applied Physics Letters, 2012, 100, .	3.3	23
226	Injection and detection of spin in a semiconductor by tunneling via interface states. Physical Review B, 2012, 85, .	3.2	47
227	Gain and Fan-Out in a Current-Field Driven Spin Transistor With an Assisting AC Magnetic Field. IEEE Transactions on Magnetics, 2012, 48, 1134-1138.	2.1	2
228	Spin-RAM for Normally-Off Computer., 2011,,. Control of magnetic properties of epitaxial Mn <mml:math< td=""><td></td><td>4</td></mml:math<>		4
229	xmins:mmi="http://www.w3.org/1998/Math/Math/MathWill display="inline"> <mmi:msub><mmi:mrow /><mml:mn>5</mml:mn>Ge<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>C<mml:math< td=""><td>3.2</td><td>60</td></mml:math<></mml:math </mmi:mrow </mmi:msub>	3.2	60
230	Tunnel Magnetoresistance above 170% and Resistance–Area Product of 1 Ω (µm) ² Attained by <i>In situ</i> Annealing of Ultra-Thin MgO Tunnel Barrier. Applied Physics Express, 2011, 4, 033002.	2.4	64
231	Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling. Nature, 2011, 475, 82-85.	27.8	218
232	Spin-torque induced rf oscillation in magnetic tunnel junctions with an Fe-rich CoFeB free layer. Journal of Physics: Conference Series, 2011, 266, 012098.	0.4	9
233	Reducing Schottky barrier height for Fe/n-GaAs junction by inserting thin GaOx layer. Journal of Applied Physics, 2011, 109, 07C701.	2.5	2
234	Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nature Physics, 2011, 7, 626-630.	16.7	156

#	Article	IF	Citations
235	Growth and magnetic properties of ultrathin Ni1+xFe2â^'xO4 films for spin filter junctions. Thin Solid Films, 2011, 519, 8239-8242.	1.8	4
236	High Spin-Torque Diode Sensitivity in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions Under DC Bias Currents. IEEE Transactions on Magnetics, 2011, 47, 3373-3376.	2.1	17
237	Magnetic noise spectra and spin transfer torque of a magnetic tunnel junction with an exchange biased synthetic ferrimagnetic reference layer. Current Applied Physics, 2011, 11, e92-e94.	2.4	10
238	Phase locking of vortex based spin transfer oscillators to a microwave current. Applied Physics Letters, 2011, 98, .	3.3	74
239	Origin of Very Low Effective Barrier Height in Magnetic Tunnel Junctions with a Semiconductor $GaO_{x}\$ Tunnel Barrier. Japanese Journal of Applied Physics, 2011, 50, 113002.	1.5	2
240	Electrical creation of spin accumulation in -type germanium. Solid State Communications, 2011, 151, 1159-1161.	1.9	68
241	Spin-Torque Diode Measurements of MgO-Based Magnetic Tunnel Junctions with Asymmetric Electrodes. Applied Physics Express, 2011, 4, 063001.	2.4	25
242	Preparation of Highly-Oriented Co2MnSi Films on a Non-Single-Crystalline Substrate Using a Titanium–Nitride Buffer Layer. Japanese Journal of Applied Physics, 2011, 50, 028001.	1.5	1
243	Sub-Poissonian shot noise in CoFeB/MgO/CoFeB-based magnetic tunneling junctions. Applied Physics Letters, 2011, 98, .	3.3	23
244	Switching-probability distribution of spin-torque switching in MgO-based magnetic tunnel junctions. Applied Physics Letters, 2011, 99, 112504.	3.3	11
245	Magneto-optics in Diluted Magnetic Semiconductors and in Ferromagnetic-Metal/Semiconductor Hybrids. Materials Research Society Symposia Proceedings, 2011, 1291, 1.	0.1	0
246	Quantitative Analysis of Coherent and Incoherent Tunneling Currents in MgO-Based Epitaxial Magnetic Tunnel Junctions. Japanese Journal of Applied Physics, 2011, 50, 063003.	1.5	1
247	Influence of Cu-Ni thickness on Peltier effect in submicron-sized Cu-Ni/Ru junctions. Journal of the Magnetics Society of Japan, 2011, 35, 264-267.	0.9	0
248	Quantitative Analysis of Coherent and Incoherent Tunneling Currents in MgO-Based Epitaxial Magnetic Tunnel Junctions. Japanese Journal of Applied Physics, 2011, 50, 063003.	1.5	0
249	Origin of Very Low Effective Barrier Height in Magnetic Tunnel Junctions with a Semiconductor GaO _{<i>x</i>13002.}	1.5	0
250	Study of Kondo effect in MgO-based magnetic tunnel junctions by electron tunnelling spectroscopy. Journal of Physics: Conference Series, 2010, 200, 052004.	0.4	4
251	Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. Nature Communications, 2010, 1, 8.	12.8	336
252	High efficient spin transfer torque writing on perpendicular magnetic tunnel junctions for high density MRAMs. Current Applied Physics, 2010, 10, e87-e89.	2.4	168

#	Article	IF	Citations
253	Enhancement of Thermal Stability Using Ferromagnetically Coupled Synthetic Free Layers in MgO-Based Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2010, 46, 2232-2235.	2.1	15
254	Spin-torque FMR and large rectification sensitivity in Fe-rich CoFeB-MgO magnetic tunnel junctions. , 2010, , .		0
255	Efficient spin injection into semiconductor from an Fe/GaOx tunnel injector. Applied Physics Letters, 2010, 96, .	3.3	18
256	Evaluation of barrier uniformity in magnetic tunnel junctions prepared using natural oxidation of thin Mg layers. Journal of Applied Physics, 2010, 108, 123915.	2.5	13
257	The effect of annealing on the junction profile of CoFeB/MgO tunnel junctions. Journal of Applied Physics, 2010, 108, 063922.	2.5	4
258	Hot electron transport in magnetic tunnel transistors with an epitaxial MgO tunnel barrier. Applied Physics Letters, 2010, 96, 112509.	3.3	9
259	Giant Peltier Effect in a Submicron-Sized Cu–Ni/Au Junction with Nanometer-Scale Phase Separation. Applied Physics Express, 2010, 3, 065204.	2.4	22
260	High Magnetoresistance Ratio and Low Resistance–Area Product in Magnetic Tunnel Junctions with Perpendicularly Magnetized Electrodes. Applied Physics Express, 2010, 3, 053003.	2.4	80
261	Spin-transfer-torque-induced rf oscillations in CoFeB/MgO/CoFeB magnetic tunnel junctions under a perpendicular magnetic field. Physical Review B, 2010, 81, .	3.2	36
262	Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions. Applied Physics Letters, 2010, 97, .	3.3	255
263	Large Diode Sensitivity of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions. Applied Physics Express, 2010, 3, 073001.	2.4	55
264	Magnetization-dependent loss in an (Al,Ga)As optical waveguide with an embedded Fe micromagnet. Optics Letters, 2010, 35, 931.	3.3	57
265	Bias dependences of in-plane and out-of-plane spin-transfer torques in symmetric MgO-based magnetic tunnel junctions. Physical Review B, 2010, 81, .	3.2	32
266	Direct Imaging of Local Spin Orientation within Artificial Nanomagnets. Applied Physics Express, 2010, 3, 063001.	2.4	4
267	Frequency Converter Based on Nanoscale MgO Magnetic Tunnel Junctions. Applied Physics Express, 2009, 2, 123003.	2.4	7
268	Spin-dependent tunneling in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions with an ultrathin Cr(001) spacer layer. Physical Review B, 2009, 79, .	3.2	31
269	Origin of the spectral linewidth in nonlinear spin-transfer oscillators based on MgO tunnel junctions. Physical Review B, 2009, 80, .	3.2	54
270	Spin-polarized tunneling in fully epitaxial magnetic tunnel diodes with a narrow-gap In1â^'xMnxAs electrode. Applied Physics Letters, 2009, 95, 192508.	3.3	1

#	Article	IF	CITATIONS
271	Influence of perpendicular magnetic anisotropy on spin-transfer switching current in CoFeBâ^•MgOâ^•CoFeB magnetic tunnel junctions. Journal of Applied Physics, 2009, 105, .	2.5	164
272	Inelastic tunneling spectra of MgO barrier magnetic tunneling junctions showing large magnon contribution. Journal of Applied Physics, 2009, 105 , .	2.5	16
273	Reduction in switching current using a low-saturation magnetization Co–Fe–(Cr, V)–B free layer in MgO-based magnetic tunnel junctions. Journal of Applied Physics, 2009, 105, 07D117.	2.5	17
274	rf amplification in a three-terminal magnetic tunnel junction with a magnetic vortex structure. Applied Physics Letters, 2009, 95, 022513.	3.3	8
275	Thermal stability and spin-transfer switchings in MgO-based magnetic tunnel junctions with ferromagnetically and antiferromagnetically coupled synthetic free layers. Applied Physics Letters, 2009, 95, .	3.3	42
276	Spin-torque-induced switching and precession in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions. Physical Review B, 2009, 80, .	3.2	32
277	Low effective barrier height of GaOx tunnel barrier in metal/semiconductor hybrid junctions. Applied Physics Letters, 2009, 94, 152101.	3.3	10
278	Title is missing!. Synthesiology, 2009, 2, 211-222.	0.2	4
279	Creating non-volatile electronics by spintronics technology. Synthesiology, 2009, 2, 194-205.	0.2	2
280	Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices. Nature Physics, 2008, 4, 803-809.	16.7	406
281	Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nature Physics, 2008, 4, 37-41.	16.7	485
282	Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM. , 2008, , .		172
283	Magnetic Tunnel Junctions. Springer Tracts in Modern Physics, 2008, , 291-333.	0.1	3
284	Magneto-optical Studies On Magnetic Semiconductors. AIP Conference Proceedings, 2008, , .	0.4	1
285	High tunneling magnetoresistance in Fe/GaOx/Ga1â $^{\circ}$ xMnxAs with metal/insulator/semiconductor structure. Applied Physics Letters, 2008, 93, .	3.3	14
286	Giant Tunneling Magnetoresistance in MgO-Based Magnetic Tunnel Junctions. Journal of the Physical Society of Japan, 2008, 77, 031001.	1.6	69
287	Dependence of switching current distribution on current pulse width of current-induced magnetization switching in MgO-based magnetic tunnel junction. Journal of Applied Physics, 2008, 103, 07A707.	2.5	9
288	Spin dependent tunneling spectroscopy in single crystalline bcc-Co/MgO/bcc-Co(001) junctions. Applied Physics Letters, 2008, 93, 122511.	3.3	18

#	Article	IF	Citations
289	Spin-dependent density of states in Galâ^'xMnxAs probed by tunneling spectroscopy. Applied Physics Letters, 2008, 92, 192512.	3.3	6
290	Tunneling spectroscopy in Feâ^•ZnSeâ^•Ga1â^'xMnxAs magnetic tunnel diodes. Journal of Applied Physics, 2008, 103, 07D127.	2.5	4
291	In situ scanning tunneling microscopy observations of polycrystalline MgO(001) tunneling barriers grown on amorphous CoFeB electrode. Applied Physics Letters, 2007, 91, 012507.	3.3	9
292	Bactericidal Effect of TiO2 on the Selected Vibrio Parahaemolyticus and Optimization Using Response Surface Methodology. Journal of Nanoscience and Nanotechnology, 2007, 7, 3709-3712.	0.9	2
293	The rectification of radio-frequency signal by magnetic domain wall in a single-layered ferromagnetic nanowire. Applied Physics Letters, 2007, 91, 132509.	3.3	14
294	Effect of Ta getter on the quality of MgO tunnel barrier in the polycrystalline CoFeBâ^•MgOâ^•CoFeB magnetic tunnel junction. Applied Physics Letters, 2007, 90, 012505.	3.3	44
295	Rectification of radio frequency current in ferromagnetic nanowire. Applied Physics Letters, 2007, 90, 182507.	3.3	64
296	Oscillation of giant tunneling magnetoresistance with respect to tunneling barrier thickness in fully epitaxial Feâ^•MgOâ^•Fe magnetic tunnel junctions. Applied Physics Letters, 2007, 90, .	3.3	43
297	Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier. Journal Physics D: Applied Physics, 2007, 40, R337-R354.	2.8	517
298	Dependence on annealing temperatures of tunneling spectra in high-resistance CoFeB/MgO/CoFeB magnetic tunnel junctions. Solid State Communications, 2007, 143, 574-578.	1.9	23
299	Differential conductance measurements of low-resistance CoFeB/MgO/CoFeB magnetic tunnel junctions. Journal of Magnetism and Magnetic Materials, 2007, 310, e649-e651.	2.3	7
300	Lift-off process for deep-submicron-size junctions using supercritical. Journal of Magnetism and Magnetic Materials, 2007, 310, e687-e689.	2.3	2
301	Thermal stability of spin-transfer switching in CPP-GMR devices. Journal of Magnetism and Magnetic Materials, 2007, 310, 2026-2028.	2.3	2
302	Defect-Mediated Properties of Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2007, 43, 2770-2775.	2.1	10
303	Growth and Transport Studies in M/I/\$p\$-SC Magnetic Tunnel Diodes Containing Different Tunnel Barrier Materials. IEEE Transactions on Magnetics, 2007, 43, 2809-2811.	2.1	5
304	Microfabrication of Magnetic Tunnel Junctions Using CH\$_{3}\$OH Etching. IEEE Transactions on Magnetics, 2007, 43, 2776-2778.	2.1	32
305	Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Coâ^•MgOâ^•Co magnetic tunnel junctions with bcc Co(001) electrodes. Applied Physics Letters, 2006, 89, 042505.	3.3	329
306	Peltier cooling in current-perpendicular-to-plane metallic junctions. Journal of Applied Physics, 2006, 99, 08H706.	2.5	14

#	Article	IF	Citations
307	Peltier effect in sub-micron-sized metallic junctions. , 2006, , .		O
308	Application of spin-torque diode effect to the analysis of spin-transfer switching in MgO-based magnetic tunnel junctions. , 2006, , .		0
309	Huge magnetoresistance and low junction resistance in magnetic tunnel junctions with crystalline MgO barrier. IEEE Transactions on Magnetics, 2006, 42, 103-107.	2.1	24
310	Ultralow resistance-area product of 0.4Ω(μm)2 and high magnetoresistance above 50% in CoFeBâ^•MgOâ^•CoFeB magnetic tunnel junctions. Applied Physics Letters, 2006, 89, 162507.	3.3	109
311	Interlayer exchange coupling in Feâ^•MgOâ^•Fe magnetic tunnel junctions. Applied Physics Letters, 2006, 89, 112503.	3.3	123
312	Tunneling spectroscopy of magnetic tunnel junctions: Comparison between CoFeBâ^•MgOâ^•CoFeB and CoFeBâ^•Al–Oâ^•CoFeB. Journal of Applied Physics, 2006, 99, 08T309.	2.5	8
313	Giant tunneling magnetoresistance in MgO-based magnetic tunnel junctions and its industrial applications. , 2006, , .		0
314	Angle-resolved soft X-ray magnetic circular dichroism in a monatomic Fe layer facing an MgO(001) tunnel barrier. Radiation Physics and Chemistry, 2006, 75, 1872-1877.	2.8	10
315	Peltier effect in multilayered nanopillars under high density charge current. Journal Physics D: Applied Physics, 2006, 39, 5267-5271.	2.8	10
316	Magnetization Reversal by Spin-Polarized Current in Magnetic Tunnel Junctions with MgO Barriers. Advances in Science and Technology, 2006, 45, 2633-2639.	0.2	0
317	Dependence of spin-transfer switching current on free layer thickness in Co–Fe–Bâ^•MgOâ^•Co–Fe–B magnetic tunnel junctions. Applied Physics Letters, 2006, 89, 032505.	3.3	43
318	X-ray absorption and x-ray magnetic circular dichroism studies on a monatomic bcc-Co(001) layer facing an amorphous Alâ \in "O tunnel barrier. Journal of Applied Physics, 2006, 100, 023912.	2.5	3
319	Spin-polarized tunneling in metal-insulator-semiconductor Feâ^•ZnSeâ^•Ga1â^'xMnxAs magnetic tunnel diodes. Applied Physics Letters, 2006, 89, 232502.	3.3	18
320	Microscopic structures of MgO barrier layers in single-crystal Feâ^•MgOâ^•Fe magnetic tunnel junctions showing giant tunneling magnetoresistance. Applied Physics Letters, 2006, 88, 251901.	3.3	8
321	Scanning tunneling microscopy observations of single-crystal Feâ^•MgOâ^•Fe magnetic tunnel junctions. Journal of Applied Physics, 2006, 99, 08T308.	2.5	2
322	Ultrahigh Speed Spin-Transfer Magnetization Switching in Magnetic Multilayers. Japanese Journal of Applied Physics, 2006, 45, 3842-3845.	1.5	3
323	Spin-Transfer Switching Property in the CPP-GMR Devices with Co-Fe and Co-Fe-B Free Layers. Journal of the Magnetics Society of Japan, 2006, 30, 192-195.	0.4	0
324	Giant Room-Temperature TMR Effect in Magnetic Tunnel Junctions with Crystalline MgO Tunnel Barrier. Materia Japan, 2005, 44, 734-741.	0.1	0

#	Article	IF	CITATIONS
325	Tunneling spectra of sputter-deposited CoFeB/MgO/CoFeB magnetic tunnel junctions showing giant tunneling magnetoresistance effect. Solid State Communications, 2005, 136, 611-615.	1.9	36
326	Spin-torque diode effect in magnetic tunnel junctions. Nature, 2005, 438, 339-342.	27.8	771
327	Peltier effect in metallic junctions with CPP structure. IEEE Transactions on Magnetics, 2005, 41, 2571-2573.	2.1	22
328	Magnetization switching by spin-polarized current in low-resistance magnetic tunnel junction with MgO [001] barrier. IEEE Transactions on Magnetics, 2005, 41, 2633-2635.	2.1	34
329	X-ray Absorption and X-ray Magnetic Circular Dichroism Studies of a Monatomic Fe(001) Layer Facing a Single-Crystalline MgO(001) Tunnel Barrier. Japanese Journal of Applied Physics, 2005, 44, L9-L11.	1.5	52
330	Peltier Effect in Sub-micron-Size Metallic Junctions. Japanese Journal of Applied Physics, 2005, 44, L12-L14.	1.5	28
331	Characterization of growth and crystallization processes in CoFeB∕MgO∕CoFeB magnetic tunnel junction structure by reflective high-energy electron diffraction. Applied Physics Letters, 2005, 87, 242503.	3.3	174
332	Giant tunneling magnetoresistance effect in low-resistance CoFeBâ^•MgO(001)â^•CoFeB magnetic tunnel junctions for read-head applications. Applied Physics Letters, 2005, 87, 072503.	3.3	196
333	Spin-dependent tunneling spectroscopy in single-crystal Feâ^•MgOâ^•Fe tunnel junctions. Applied Physics Letters, 2005, 87, 142502.	3.3	64
334	Giant tunneling magnetoresistance in fully epitaxial body-centered-cubic Coâ^•MgOâ^•Fe magnetic tunnel junctions. Applied Physics Letters, 2005, 87, 222508.	3.3	73
335	Tunnel magnetoresistance effect in Cr1â^'ÎTeâ^•AlAsâ^•Ga1â^'xMnxAs magnetic tunnel junctions. Journal of Applied Physics, 2005, 97, 10D305.	2.5	23
336	Origin of the Tunnel Anisotropic Magnetoresistance inGa1â^'xMnxAs/ZnSe/Ga1â^'xMnxAsMagnetic Tunnel Junctions of II-VI/III-V Heterostructures. Physical Review Letters, 2005, 95, 086604.	7.8	114
337	Atomically flat aluminum-oxide barrier layers constituting magnetic tunnel junctions observed by in situ scanning tunneling microscopy. Applied Physics Letters, 2005, 87, 171909.	3.3	10
338	Spin-Dependent Tunneling in Magnetic Tunnel Junctions with a Layered Antiferromagnetic Cr(001) Spacer: Role of Band Structure and Interface Scattering. Physical Review Letters, 2005, 95, 086602.	7.8	46
339	230% room-temperature magnetoresistance in CoFeBâ^•MgOâ^•CoFeB magnetic tunnel junctions. Applied Physics Letters, 2005, 86, 092502.	3.3	861
340	Evaluation of Spin-Transfer Switching in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions. Japanese Journal of Applied Physics, 2005, 44, L1237-L1240.	1.5	154
341	Magnetic State of Fe(001) Monatomic Layer Facing Single-crystalline MgO(001) Tunneling Barrier: X-ray Absorption Spectroscopy and X-ray Magnetic Circular Dicliroism Study. Journal of the Magnetics Society of Japan, 2005, 29, 463-467.	0.4	0
342	High Tunnel Magnetoresistance at Room Temperature in Fully Epitaxial Fe/MgO/Fe Tunnel Junctions due to Coherent Spin-Polarized Tunneling. Japanese Journal of Applied Physics, 2004, 43, L588-L590.	1.5	269

#	Article	IF	Citations
343	Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Materials, 2004, 3, 868-871.	27.5	2,907
344	Angle-, field-, temperature-, and size-dependent magnetic circular X-ray dichroism in Au/Co nanoclusters/Au(111). Journal of Electron Spectroscopy and Related Phenomena, 2004, 136, 107-115.	1.7	4
345	X-ray absorption and X-ray magnetic circular dichroism studies of a Co(0 0 1) monatomic layer at the interface with Al2O3. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1489-E1490.	2.3	6
346	Koideet al.ÂReply:. Physical Review Letters, 2003, 90, .	7.8	1
347	Quantum size effect in magnetic tunnel junctions with ultrathin Fe(001) electrodes. Journal of Applied Physics, 2002, 91, 7035.	2.5	14
348	Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions. Science, 2002, 297, 234-237.	12.6	238
349	A large quantum-well oscillation of the TMR effect. Journal Physics D: Applied Physics, 2002, 35, 2427-2431.	2.8	6
350	Observation of spin-polarized tunneling by scanning tunneling microscopy. Journal of Magnetism and Magnetic Materials, 2002, 239, 126-128.	2.3	0
351	Quantum-well effect in magnetic tunnel junctions with ultrathin single-crystal Fe(100) electrodes. Applied Physics Letters, 2001, 79, 4381-4383.	3.3	31
352	Direct Determination of Interfacial Magnetic Moments with a Magnetic Phase Transition in Co Nanoclusters on Au(111). Physical Review Letters, 2001, 87, 257201.	7.8	120
353	Magnetic tunnel junctions with single-crystal electrodes: A crystal anisotropy of tunnel magneto-resistance. Europhysics Letters, 2000, 52, 344-350.	2.0	92
354	Schottky barrier height of MnSb(0001)/GaAs(111)B contacts: Influence of interface structure. Journal of Applied Physics, 2000, 88, 2043-2047.	2.5	9
355	Shape induced in-plane magnetic anisotropy reorientation in epitaxial hexagonal close packed cobalt dots. Journal of Applied Physics, 2000, 87, 5621-5623.	2.5	10
356	Kerr microscopy observations of magnetization process in microfabricated ferromagnetic wires. Journal of Applied Physics, 2000, 87, 5618-5620.	2.5	36
357	An enhancement of interface exchange pinning in NiFe/FeRh-Ir bilayers grown on vicinal MgO[001] surfaces. , 1999, , .		0
358	Structural and magnetic properties of epitaxial FeRh-Ir(001) thin film antiferromagnets. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 737-739.	2.3	4
359	Magnetic and transport properties of epitaxial Fe/MgO(001) wires. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 200-203.	2.3	18
360	MFM observation of magnetic domain structure in exchange coupled NiFe/FeRh–Ir (001) films. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 443-446.	2.3	2

#	Article	IF	CITATIONS
361	Magnetoresistivity of micron size (10·0) epitaxial Co wires. IEEE Transactions on Magnetics, 1999, 35, 2862-2864.	2.1	12
362	Enhancement of coercive force in NiFe/FeRh-Ir bilayers grown on vicinal MgO[001] surfaces. IEEE Transactions on Magnetics, 1999, 35, 3862-3864.	2.1	0
363	Shape effect on the magnetic anisotropy of an array of epitaxial ($10\hat{A}\cdot0$) Co dots. IEEE Transactions on Magnetics, 1999, 35, 3472-3474.	2.1	13
364	Magnetic and Transport Properties of Sub-micron Ferromagnetic Wires., 1999,, 163-168.		0
365	Magneto-optical Kerr spectra of epitaxially grown Fe (0 0 1) and (1 1 0) films in the range $1.5\hat{a}\in$ "10 eV. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 1251-1252.	2.3	12
366	Epitaxial growth and magnetic properties of B2-type ordered FeRh alloys. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 1296-1298.	2.3	8
367	MFM observation of magnetic phase transitions in ordered FeRh systems. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 181-182.	2.3	26
368	Nonlinear magneto-optical response from quantum well states in an Fe(001) wedge. Surface Science, 1998, 402-404, 356-359.	1.9	2
369	Exchange coupling of NiFe/FeRh–Ir thin films. Journal of Applied Physics, 1998, 83, 6813-6815.	2.5	28
370	Magnetoresistance in single Fe(001) ultrathin films. Journal of Applied Physics, 1998, 83, 7031-7033.	2.5	10
371	Oscillatory Magneto-Optical Effect in a Au (001) Film Deposited on Fe: Experimental Confirmation of a Spin-Polarized Quantum Size Effect. Physical Review Letters, 1998, 80, 5200-5203.	7.8	54
372	Magneto-Optical Effects of Ultrathin Ferro-, Antiferro- and Non-Magnetic Films. Materials Research Society Symposia Proceedings, 1997, 475, 227.	0.1	3
373	Domain Structures and Magneto-Optical Properties of FeRh System Alloys. Journal of the Magnetics Society of Japan, 1997, 21, 357-360.	0.4	1
374	Magnetostriction and thermal expansion measurements on FeRh1â^xPtx alloys. Journal of Applied Physics, 1996, 79, 4659.	2.5	12
375	Magnetism in Body-Centered Tetragonal FeRh1-xPdxAlloys (II) Band Structure. Journal of the Physical Society of Japan, 1995, 64, 4914-4922.	1.6	9
376	Magnetism of FeRh1â^'xPdx system â€" band calculation. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 79-80.	2.3	6
377	Giant room temperature volume magnetostriction in an Feî—'Rhî—'Pd alloy. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 231-232.	2.3	17
378	Change in the Resistivity of bcc and bct FeRh Alloys at First-Order Magnetic Phase Transitions. Journal of the Physical Society of Japan, 1995, 64, 3978-3985.	1.6	23

#	Article	IF	CITATIONS
379	X-Ray Diffraction Studies of FeRh0.38Pd0.62Alloy with Orthorhombic Structure. Journal of the Physical Society of Japan, 1995, 64, 3153-3156.	1.6	10
380	Magnetism of Body-Centered Tetragonal FeRh1-xPdxAlloys (I) Magnetic Properties. Journal of the Physical Society of Japan, 1995, 64, 4906-4913.	1.6	24
381	Magneto-Volume and Tetragonal Elongation Effects on Magnetic Phase Transitions of Body-Centered Tetragonal FeRh1-xPtx. Journal of the Physical Society of Japan, 1994, 63, 3129-3144.	1.6	58
382	Magnetic Properties of bcc FeRh _{1-x} M _x Systems. IEEE Translation Journal on Magnetics in Japan, 1994, 9, 202-209.	0.1	17
383	First-Order Magnetic Phase Transition in bcc FeRh–Ir Alloy under High Pressures up to 6.2 GPa. Journal of the Physical Society of Japan, 1994, 63, 855-858.	1.6	11
384	Magnetic Properties of bcc FeRh1-xMx Systems Journal of the Magnetics Society of Japan, 1994, 18, 235-240.	0.4	9
385	Transparent magnetic fluid: preparation of YIG ultrafine particles. Journal of Magnetism and Magnetic Materials, 1993, 122, 6-9.	2.3	31
386	Magnetic properties and phase transition in bct FeRh1 \hat{a}^{**} xPtx alloys. Nuclear Instruments & Methods in Physics Research B, 1993, 76, 71-73.	1.4	14
387	First-Order Magnetic Phase Transitions Observed in bct FeRh–Pt, Pd Systems. Japanese Journal of Applied Physics, 1993, 32, 232.	1.5	32
388	Structural phase transition and magnetic properties of FeRh1â^2xCox alloys. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 2025-2026.	2.3	23
389	Quantum size effect in magnetic tunnel junctions with single-crystal ultrathin electrodes. , 0, , .		0
390	Single-Shot Measurements of Spin-Transfer Switching in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions. Applied Physics Express, 0, 1, 061303.	2.4	29
391	Spin-Transfer Switching and Thermal Stability in an FePt/Au/FePt Nanopillar Prepared by Alternate Monatomic Layer Deposition. Applied Physics Express, 0, 1, 041302.	2.4	23
392	Highly Enhanced Electron-Injection Efficiency in GaAs-Based Light-Emitting Diodes Using a Fe/GaO _{<i>x</i>} Tunnel Injector. Applied Physics Express, 0, 2, 083003.	2.4	7
393	Current-Field Driven "Spin Transistor― Applied Physics Express, 0, 2, 063004.	2.4	10
394	Magnetic Properties of Materials for MRAM., 0,, 29-54.		1
395	Perpendicular Magnetic Anisotropy and its Voltage Control in MgO/CoFeB/MgO Junctions with Atomically Thin Ta Adhesion Layers. SSRN Electronic Journal, 0, , .	0.4	0