Xu Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7703641/publications.pdf

Version: 2024-02-01

394421 395702 3,224 33 19 33 h-index citations g-index papers 34 34 34 4321 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Radiomics Analysis of Gd-EOB-DTPA Enhanced Hepatic MRI for Assessment of Functional Liver Reserve. Academic Radiology, 2022, 29, 213-218.	2.5	8
2	Role of chromatin modulator Dpy30 in osteoclast differentiation and function. Bone, 2022, 159, 116379.	2.9	2
3	Safety and feasibility of laparoscopic liver resection for hepatocellular carcinoma with clinically significant portal hypertension: a propensity score-matched study. Surgical Endoscopy and Other Interventional Techniques, 2021, 35, 3267-3278.	2.4	11
4	Differentiation and management of hepatobiliary mucinous cystic neoplasms: a single centre experience for 8Âyears. BMC Surgery, 2021, 21, 146.	1.3	5
5	Frontline Science: Characterization and regulation of osteoclast precursors following chronic <i>Porphyromonas gingivalis</i> infection. Journal of Leukocyte Biology, 2020, 108, 1037-1050.	3.3	20
6	Laparoscopic Anatomical Portal Territory Hepatectomy with Cirrhosis by Takasaki's Approach and Indocyanine Green Fluorescence Navigation (with Video). Annals of Surgical Oncology, 2020, 27, 5179-5180.	1.5	5
7	Niclosamide and its derivative DKâ€520 inhibit RANKLâ€induced osteoclastogenesis. FEBS Open Bio, 2020, 10, 1685-1697.	2.3	4
8	Enhanced dual function of osteoclast precursors following calvarial <i>Porphyromonas gingivalis</i> infection. Journal of Periodontal Research, 2020, 55, 410-425.	2.7	16
9	Perioperative outcomes comparing laparoscopic with open repeat liver resection for post-hepatectomy recurrent liver cancer: A systematic review and meta-analysis. International Journal of Surgery, 2020, 79, 17-28.	2.7	24
10	Specific RANK Cytoplasmic Motifs Drive Osteoclastogenesis. Journal of Bone and Mineral Research, 2019, 34, 1938-1951.	2.8	13
11	Insights into the roles of lncRNAs in skeletal and dental diseases. Cell and Bioscience, 2018, 8, 8.	4.8	13
12	Oleanolic acid exerts bone protective effects in ovariectomized mice by inhibiting osteoclastogenesis. Journal of Pharmacological Sciences, 2018, 137, 76-85.	2.5	30
13	Effectiveness and safety of continuous wound infiltration for postoperative pain management after open gastrectomy. World Journal of Gastroenterology, 2016, 22, 1902.	3.3	20
14	The IVVY Motif and Tumor Necrosis Factor Receptor-associated Factor (TRAF) Sites in the Cytoplasmic Domain of the Receptor Activator of Nuclear Factor ÎB (RANK) Cooperate to Induce Osteoclastogenesis. Journal of Biological Chemistry, 2015, 290, 23738-23750.	3.4	16
15	IL-1R/TLR2 through MyD88 Divergently Modulates Osteoclastogenesis through Regulation of Nuclear Factor of Activated T Cells c1 (NFATc1) and B Lymphocyte-induced Maturation Protein-1 (Blimp1). Journal of Biological Chemistry, 2015, 290, 30163-30174.	3.4	32
16	Molecular Mechanism of Thiazolidinedione-Mediated Inhibitory Effects on Osteoclastogenesis. PLoS ONE, 2014, 9, e102706.	2.5	12
17	Osteoclasts: New Insights. Bone Research, 2013, 1, 11-26.	11.4	372
18	Molecular Basis of Requirement of Receptor Activator of Nuclear Factor κB Signaling for Interleukin 1-mediated Osteoclastogenesis. Journal of Biological Chemistry, 2012, 287, 15728-15738.	3.4	74

#	Article	IF	Citations
19	Disorders of Bone Remodeling. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 121-145.	22.4	904
20	TLR2-dependent Modulation of Osteoclastogenesis by Porphyromonas gingivalis through Differential Induction of NFATc1 and NF-ÎB. Journal of Biological Chemistry, 2011, 286, 24159-24169.	3.4	89
21	Receptor Activator of NF-κB (RANK) Cytoplasmic IVVY535–538 Motif Plays an Essential Role in Tumor Necrosis Factor-α (TNF)-mediated Osteoclastogenesis. Journal of Biological Chemistry, 2010, 285, 37427-37435.	3.4	34
22	Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opinion on Therapeutic Targets, 2010, 14, 923-934.	3.4	52
23	Molecular Mechanism of the Bifunctional Role of Lipopolysaccharide in Osteoclastogenesis. Journal of Biological Chemistry, 2009, 284, 12512-12523.	3.4	96
24	Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. Current Chemical Biology, 2009, 3, 189-196.	0.5	60
25	A Novel Receptor Activator of NF-κB (RANK) Cytoplasmic Motif Plays an Essential Role in Osteoclastogenesis by Committing Macrophages to the Osteoclast Lineage. Journal of Biological Chemistry, 2006, 281, 4678-4690.	3.4	40
26	RANKing Intracellular Signaling in Osteoclasts. IUBMB Life, 2005, 57, 389-395.	3.4	186
27	Receptor Activator of NF-ΰB (RANK) Cytoplasmic Motif, 369PFQEP373, Plays a Predominant Role in Osteoclast Survival in Part by Activating Akt/PKB and Its Downstream Effector AFX/FOXO4. Journal of Biological Chemistry, 2005, 280, 43064-43072.	3.4	28
28	Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene, 2005, 350, 1-13.	2.2	118
29	OSTEOCLAST BIOLOGY., 2005,, 71-93.		1
30	Functional Identification of Three Receptor Activator of NF-ÎB Cytoplasmic Motifs Mediating Osteoclast Differentiation and Function. Journal of Biological Chemistry, 2004, 279, 54759-54769.	3.4	51
31	Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin. Journal of Cell Biology, 2003, 160, 565-575.	5.2	105
32	A Glanzmann's mutation in β3 integrin specifically impairs osteoclast function. Journal of Clinical Investigation, 2001, 107, 1137-1144.	8.2	131
33	Mice lacking \hat{I}^2 3 integrins are osteosclerotic because of dysfunctional osteoclasts. Journal of Clinical Investigation, 2000, 105, 433-440.	8.2	651