Sophie Mavrogeni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7702821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The present and future of deep learning in radiology. European Journal of Radiology, 2019, 114, 14-24.	2.6	229
2	Magnetic resonance angiography isequivalent to X-Ray coronary angiography for the evaluation of coronary arteries in kawasaki disease. Journal of the American College of Cardiology, 2004, 43, 649-652.	2.8	150
3	Cardiovascular magnetic resonance in rheumatology: Current status and recommendations for use. International Journal of Cardiology, 2016, 217, 135-148.	1.7	114
4	A comparison of magnetic resonance imaging and cardiac biopsy in the evaluation of heart iron overload in patients with beta-thalassemia major. European Journal of Haematology, 2005, 75, 241-247.	2.2	88
5	COVID-19 pathways for brain and heart injury in comorbidity patients: A role of medical imaging and artificial intelligence-based COVID severity classification: A review. Computers in Biology and Medicine, 2020, 124, 103960.	7.0	79
6	The Role of Multimodality Imaging in the Evaluation of Takayasu Arteritis. Seminars in Arthritis and Rheumatism, 2013, 42, 401-412.	3.4	73
7	Myocarditis as a precipitating factor for heart failure: evaluation and 1â€year followâ€up using cardiovascular magnetic resonance and endomyocardial biopsy. European Journal of Heart Failure, 2011, 13, 830-837.	7.1	70
8	Myocardial inflammation in Duchenne Muscular Dystrophy as a precipitating factor for heart failure: a prospective study. BMC Neurology, 2010, 10, 33.	1.8	66
9	Cardiac Tissue Characterization and the Diagnostic Value of Cardiovascular Magnetic Resonance in Systemic Connective Tissue Diseases. Arthritis Care and Research, 2014, 66, 104-112.	3.4	66
10	Rheumatoid Arthritis: Atherosclerosis Imaging and Cardiovascular Risk Assessment Using Machine and Deep Learning–Based Tissue Characterization. Current Atherosclerosis Reports, 2019, 21, 7.	4.8	64
11	Cardiac involvement in Duchenne and Becker muscular dystrophy. World Journal of Cardiology, 2015, 7, 410.	1.5	62
12	Myocardial Inflammation in Autoimmune Diseases: Investigation by Cardiovascular Magnetic Resonance and Endomyocardial Biopsy. Inflammation and Allergy: Drug Targets, 2009, 8, 390-397.	1.8	60
13	Magnetic Resonance Angiography, Function and Viability Evaluation in Patients with Kawasaki Disease. Journal of Cardiovascular Magnetic Resonance, 2006, 8, 493-498.	3.3	58
14	A low-cost machine learning-based cardiovascular/stroke risk assessment system: integration of conventional factors with image phenotypes. Cardiovascular Diagnosis and Therapy, 2019, 9, 420-430.	1.7	54
15	Cardiovascular Magnetic Resonance Imaging clarifies cardiac pathophysiology in early, asymptomatic diffuse systemic sclerosis. Inflammation and Allergy: Drug Targets, 2015, 14, 29-36.	1.8	52
16	lgG4-related cardiovascular disease. The emerging role of cardiovascular imaging. European Journal of Radiology, 2017, 86, 169-175.	2.6	52
17	3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromaticâ,,¢ 2.0. Computers in Biology and Medicine, 2020, 125, 103958.	7.0	52

18 T1 and T2 Mapping in Cardiology: "Mapping the Obscure Object of Desire†Cardiology, 2017, 138, 207-217. 1.4 51

#	Article	IF	CITATIONS
19	Cardiovascular/stroke risk predictive calculators: a comparison between statistical and machine learning models. Cardiovascular Diagnosis and Therapy, 2020, 10, 919-938.	1.7	46
20	A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence. Computers in Biology and Medicine, 2021, 130, 104210.	7.0	46
21	Cardiovascular magnetic resonance imaging pattern at the time of diagnosis of treatment naÃ ⁻ ve patients with connective tissue diseases. International Journal of Cardiology, 2017, 236, 151-156.	1.7	45
22	Contrast-Enhanced CMR Imaging Reveals Myocardial Involvement in Idiopathic Inflammatory Myopathy Without Cardiac Manifestations. JACC: Cardiovascular Imaging, 2011, 4, 1324-1325.	5.3	43
23	How to image Kawasaki disease: A validation of different imaging techniques. International Journal of Cardiology, 2008, 124, 27-31.	1.7	42
24	Cardiovascular magnetic resonance in systemic sclerosis: "Pearls and pitfalls― Seminars in Arthritis and Rheumatism, 2017, 47, 79-85.	3.4	42
25	Cardiac magnetic resonance predicts ventricular arrhythmias in scleroderma: the Scleroderma Arrhythmia Clinical Utility Study (SAnCtUS). Rheumatology, 2020, 59, 1938-1948.	1.9	42
26	Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment. Computers in Biology and Medicine, 2020, 123, 103847.	7.0	42
27	Cardiac Involvement in Duchenne Muscular Dystrophy and Related Dystrophinopathies. Methods in Molecular Biology, 2018, 1687, 31-42.	0.9	41
28	Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application. Medical and Biological Engineering and Computing, 2021, 59, 511-533.	2.8	41
29	Cardiac and Sternocleidomastoid Muscle Involvement in Duchenne Muscular Dystrophy. Chest, 2005, 127, 143-148.	0.8	40
30	The MOGE(S) classification for cardiomyopathies: current status and future outlook. Heart Failure Reviews, 2017, 22, 743-752.	3.9	40
31	Silent myocarditis in systemic sclerosis detected by cardiovascular magnetic resonance using Lake Louise criteria. BMC Cardiovascular Disorders, 2017, 17, 187.	1.7	39
32	Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. Annals of Translational Medicine, 2021, 9, 1206-1206.	1.7	39
33	Global perspective on carotid intima-media thickness and plaque: should the current measurement guidelines be revisited?. International Angiology, 2020, 38, 451-465.	0.9	39
34	Magnetic resonance evaluation of liver and myocardial iron deposition in thalassemia intermedia and b-thalassemia major. International Journal of Cardiovascular Imaging, 2008, 24, 849-854.	1.5	38
35	Effect of deflazacort on cardiac and sternocleidomastoid muscles in Duchenne muscular dystrophy: A magnetic resonance imaging study. European Journal of Paediatric Neurology, 2009, 13, 34-40.	1.6	38
36	Prediction of ventricular arrhythmias using cardiovascular magnetic resonance. European Heart Journal Cardiovascular Imaging, 2013, 14, 518-525.	1.2	38

#	Article	IF	CITATIONS
37	Performance evaluation of 10-year ultrasound image-based stroke/cardiovascular (CV) risk calculator by comparing against ten conventional CV risk calculators: A diabetic study. Computers in Biology and Medicine, 2019, 105, 125-143.	7.0	38
38	Nonlinear model for the carotid artery disease 10â€year risk prediction by fusing conventional cardiovascular factors to carotid ultrasound image phenotypes: A Japanese diabetes cohort study. Echocardiography, 2019, 36, 345-361.	0.9	36
39	Multimodality imaging and the emerging role of cardiac magnetic resonance in autoimmune myocarditis. Autoimmunity Reviews, 2012, 12, 305-312.	5.8	34
40	lmaging patterns of heart failure in rheumatoid arthritis evaluated by cardiovascular magnetic resonance. International Journal of Cardiology, 2013, 168, 4333-4335.	1.7	34
41	Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: A narrative review of integrated approaches using carotid ultrasound. Computers in Biology and Medicine, 2020, 126, 104043.	7.0	34
42	A Special Report on Changing Trends in Preventive Stroke/Cardiovascular Risk Assessment Via B-Mode Ultrasonography. Current Atherosclerosis Reports, 2019, 21, 25.	4.8	33
43	Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1.0. Medical and Biological Engineering and Computing, 2019, 57, 1553-1566.	2.8	33
44	Heart involvement in rheumatoid arthritis: Multimodality imaging and the emerging role of cardiac magnetic resonance. Seminars in Arthritis and Rheumatism, 2013, 43, 314-324.	3.4	32
45	Cardiac magnetic resonance imaging in myocardial inflammation in autoimmune rheumatic diseases: An appraisal of the diagnostic strengths and limitations of the Lake Louise criteria. International Journal of Cardiology, 2018, 252, 216-219.	1.7	32
46	Coronary artery ectasia: from diagnosis to treatment. Hellenic Journal of Cardiology, 2010, 51, 158-63.	1.0	32
47	Myocardial iron deposition in beta-thalassemia studied by magnetic resonance imaging. International Journal of Cardiovascular Imaging, 1998, 14, 117-122.	0.6	31
48	Myocardial perfusion-fibrosis pattern in systemic sclerosis assessed by cardiac magnetic resonance. International Journal of Cardiology, 2012, 159, e56-e58.	1.7	31
49	Myocarditis during acute inflammatory myopathies. International Journal of Cardiology, 2013, 164, e3-e4.	1.7	31
50	Ranking of stroke and cardiovascular risk factors for an optimal risk calculator design: Logistic regression approach. Computers in Biology and Medicine, 2019, 108, 182-195.	7.0	30
51	A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework. Journal of Digital Imaging, 2021, 34, 581-604.	2.9	29
52	Cardiac Involvement in ANCA (+) and ANCA (-) Churg-Strauss Syndrome Evaluated by Cardiovascular Magnetic Resonance. Inflammation and Allergy: Drug Targets, 2013, 12, 322-327.	1.8	29
53	Low-cost preventive screening using carotid ultrasound in patients with diabetes. Frontiers in Bioscience - Landmark, 2020, 25, 1132-1171.	3.0	29
54	Is There a Place for Cardiovascular Magnetic Resonance Imaging in the Evaluation of Cardiovascular Involvement in Rheumatic Diseases?. Seminars in Arthritis and Rheumatism, 2011, 41, 488-496.	3.4	28

#	Article	IF	CITATIONS
55	The emerging role of cardiovascular magnetic resonance in the evaluation of Kawasaki disease. International Journal of Cardiovascular Imaging, 2013, 29, 1787-1798.	1.5	28
56	Cardiovascular magnetic resonance imaging in asymptomatic patients with connective tissue disease and recent onset left bundle branch block. International Journal of Cardiology, 2014, 171, 82-87.	1.7	28
57	Cardiovascular Magnetic Resonance Identifies High-Risk Systemic Sclerosis Patients with Normal Echocardiograms and Provides Incremental Prognostic Value. Diagnostics, 2019, 9, 220.	2.6	28
58	Cardiac and Muscular Involvement in Idiopathic Inflammatory Myopathies: Noninvasive Diagnostic Assessment and the Role of Cardiovascular and Skeletal Magnetic Resonance Imaging. Inflammation and Allergy: Drug Targets, 2014, 13, 206-216.	1.8	28
59	Imaging modalities for the diagnosis of pulmonary hypertension in systemic sclerosis. Nature Reviews Rheumatology, 2012, 8, 203-213.	8.0	27
60	Cardiac Tissue Characterization and Imaging in Autoimmune Rheumatic Diseases. JACC: Cardiovascular Imaging, 2017, 10, 1387-1396.	5.3	26
61	The emerging role of Cardiovascular Magnetic Resonance in the evaluation of hypertensive heart disease. BMC Cardiovascular Disorders, 2017, 17, 132.	1.7	26
62	Morphologic TPA (mTPA) and composite risk score for moderate carotid atherosclerotic plaque is strongly associated with HbA1c in diabetes cohort. Computers in Biology and Medicine, 2018, 101, 128-145.	7.0	25
63	Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging. Rheumatology International, 2020, 40, 1921-1939.	3.0	25
64	Cardiovascular magnetic resonance imaging evaluation of two families with Becker muscular dystrophy. Neuromuscular Disorders, 2010, 20, 717-719.	0.6	24
65	CMR Detects Subclinical Cardiomyopathy in Mother-Carriers of Duchenne and Becker Muscular Dystrophy. JACC: Cardiovascular Imaging, 2013, 6, 526-528.	5.3	24
66	Cardiac involvement in antiphospholipid syndrome: The diagnostic role of noninvasive cardiac imaging. Seminars in Arthritis and Rheumatism, 2016, 45, 611-616.	3.4	24
67	Evaluation of myocarditis in a pediatric population using cardiovascular magnetic resonance and endomyocardial biopsy. International Journal of Cardiology, 2012, 160, 192-195.	1.7	23
68	Cardiovascular magnetic resonance imaging: clinical implications in the evaluation of connective tissue diseases. Journal of Inflammation Research, 2017, Volume 10, 55-61.	3.5	23
69	Update on assessment and management of primary cardiac involvement in systemic sclerosis. Journal of Scleroderma and Related Disorders, 2018, 3, 53-65.	1.7	23
70	Myocardial perfusion in peripheral Raynaud's phenomenon. Evaluation using stress cardiovascular magnetic resonance. International Journal of Cardiology, 2017, 228, 444-448.	1.7	22
71	CMR Evaluation of Cardiac Involvement During the Convalescence of Kawasaki Disease. JACC: Cardiovascular Imaging, 2011, 4, 1140-1141.	5.3	21
72	Myocarditis and subclavian stenosis in Takayasu arteritis. International Journal of Cardiology, 2011, 148, 223-224.	1.7	21

#	Article	IF	CITATIONS
73	Naxos disease evolution mimicking acute myocarditis: The role of cardiovascular magnetic resonance imaging. International Journal of Cardiology, 2013, 166, e14-e15.	1.7	21
74	Heart failure imaging patterns in systemic lupus erythematosus. Evaluation using cardiovascular magnetic resonance. International Journal of Cardiology, 2014, 176, 559-561.	1.7	21
75	Cardiovascular magnetic resonance imaging pattern in patients with autoimmune rheumatic diseases and ventricular tachycardia with preserved ejection fraction. International Journal of Cardiology, 2019, 284, 105-109.	1.7	21
76	Myopericarditis, as the First Sign of Rheumatoid Arthritis Relapse, Evaluated by Cardiac Magnetic Resonance. Inflammation and Allergy: Drug Targets, 2013, 12, 206-211.	1.8	21
77	Myocardial and hepatic T2* magnetic resonance evaluation in ex-thalassemic patients after bone-marrow transplantation. International Journal of Cardiovascular Imaging, 2007, 23, 739-745.	1.5	20
78	Can cardiovascular magnetic resonance prompt early cardiovascular/rheumatic treatment in autoimmune rheumatic diseases? Current practice and future perspectives. Rheumatology International, 2018, 38, 949-958.	3.0	20
79	Morphological Carotid Plaque Area Is Associated With Glomerular Filtration Rate: A Study of South Asian Indian Patients With Diabetes and Chronic Kidney Disease. Angiology, 2020, 71, 520-535.	1.8	20
80	Rheumatoid Arthritis: An Autoimmune Disease with Female Preponderance and Cardiovascular Risk Equivalent to Diabetes Mellitus: Role of Cardiovascular Magnetic Resonance. Inflammation and Allergy: Drug Targets, 2014, 13, 81-93.	1.8	20
81	Cardiovascular disease in women: insights from magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 71.	3.3	19
82	Cardiovascular magnetic resonance in women with cardiovascular disease: position statement from the Society for Cardiovascular Magnetic ResonanceÂ(SCMR). Journal of Cardiovascular Magnetic Resonance, 2021, 23, 52.	3.3	19
83	Hyperthyroidism induced autoimmune myocarditis. Evaluation by Cardiovascular Magnetic Resonance and endomyocardial biopsy. International Journal of Cardiology, 2012, 158, 166-168.	1.7	18
84	Diagnosis, severity grading and prognosis of left ventricular non-compaction using cardiovascular magnetic resonance. International Journal of Cardiology, 2013, 167, 598-599.	1.7	18
85	Abnormal Myocardial Perfusion in Kawasaki Disease Convalescence. JACC: Cardiovascular Imaging, 2015, 8, 106-108.	5.3	18
86	CMR feature tracking in cardiac asymptomatic systemic sclerosis: Clinical implications. PLoS ONE, 2019, 14, e0221021.	2.5	18
87	Myocardial Involvement in a Patient With Chlamydia trachomatis Infection. Journal of Cardiac Failure, 2008, 14, 351-353.	1.7	17
88	Noncorticosteroid Immunosuppression LimitsÂMyocardial Damage and Contractile Dysfunction inÂEosinophilic Granulomatosis With Polyangiitis (Churg-Strauss Syndrome). Journal of the American College of Cardiology, 2015, 65, 103-105.	2.8	17
89	Geometric Total Plaque Area Is an Equally Powerful Phenotype Compared With Carotid Intima-Media Thickness for Stroke Risk Assessment: A Deep Learning Approach. Journal for Vascular Ultrasound, 2018, 42, 162-188.	0.1	17
90	Effect of iron overload on exercise capacity in thalassemic patients with heart failure. International Journal of Cardiovascular Imaging, 2009, 25, 777-783.	1.5	16

#	Article	IF	CITATIONS
91	Sudden cardiac death in athletes and the value of cardiovascular magnetic resonance. European Journal of Clinical Investigation, 2018, 48, e12955.	3.4	16
92	Does the Carotid Bulb Offer a Better 10-Year CVD/Stroke Risk Assessment Compared to the Common Carotid Artery? A 1516 Ultrasound Scan Study. Angiology, 2020, 71, 920-933.	1.8	16
93	Integration of estimated glomerular filtration rate biomarker in image-based cardiovascular disease/stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease. International Angiology, 2020, 39, 290-306.	0.9	16
94	Evaluation of myocardial iron overload using magnetic resonance imaging. Blood Transfusion, 2009, 7, 183-7.	0.4	16
95	Cardiac magnetic resonance can early assess the presence and severity of heart involvement in Naxos disease. International Journal of Cardiology, 2012, 154, e19-e20.	1.7	15
96	Fulminant myocarditis. Can cardiac magnetic resonance predict evolution to heart failure?. International Journal of Cardiology, 2012, 159, e37-e38.	1.7	15
97	Silent Myocardial Perfusion Abnormalities Detected by Stress Cardiovascular Magnetic Resonance in Antiphospholipid Syndrome: A Case-Control Study. Journal of Clinical Medicine, 2019, 8, 1084.	2.4	15
98	Ultrasound-based stroke/cardiovascular risk stratification using Framingham Risk Score and ASCVD Risk Score based on "Integrated Vascular Age―instead of "Chronological Age― a multi-ethnic study of Asian Indian, Caucasian, and Japanese cohorts. Cardiovascular Diagnosis and Therapy, 2020, 10, 939-954.	1.7	15
99	Cardiovascular disease and stroke risk assessment in patients with chronic kidney disease using integration of estimated glomerular filtration rate, ultrasonic image phenotypes, and artificial intelligence: a narrative review. International Angiology, 2021, 40, 150-164.	0.9	15
100	The importance of heart and brain imaging in children and adolescents with Multisystem Inflammatory Syndrome in Children (MIS-C). Rheumatology International, 2021, 41, 1037-1044.	3.0	15
101	Contribution of cardiovascular magnetic resonance in the evaluation of coronary arteries. World Journal of Cardiology, 2014, 6, 1060.	1.5	15
102	Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics, 2022, 12, 1234.	2.6	15
103	Why Currently Used Diagnostic Techniques for Heart Failure in Rheumatoid Arthritis Are Not Enough: The Challenge of Cardiovascular Magnetic Resonance Imaging. Reviews in Cardiovascular Medicine, 2014, 15, 320-331.	1.4	15
104	Severe/Extreme Hypertriglyceridemia and LDL Apheretic Treatment: Review of the Literature, Original Findings. Cholesterol, 2014, 2014, 1-9.	1.6	14
105	Pseudo-infarction pattern in diffuse systemic sclerosis. Evaluation using cardiovascular magnetic resonance. International Journal of Cardiology, 2016, 214, 465-468.	1.7	14
106	Oedemaâ€fibrosis in Duchenne Muscular Dystrophy: Role of cardiovascular magnetic resonance imaging. European Journal of Clinical Investigation, 2017, 47, e12843.	3.4	14
107	Transcatheter septal ablation in hypertrophic obstructive cardiomyopathy: a technical guide and review of published results. Heart Failure Reviews, 2018, 23, 907-917.	3.9	14
108	Microsomal triglyceride transfer protein inhibitor (lomitapide) efficacy in the treatment of patients with homozygous familial hypercholesterolaemia. European Journal of Preventive Cardiology, 2020, 27, 157-165.	1.8	14

#	Article	IF	CITATIONS
109	Updating the Risk Stratification for Sudden Cardiac Death in Cardiomyopathies: The Evolving Role of Cardiac Magnetic Resonance Imaging. An Approach for the Electrophysiologist. Diagnostics, 2020, 10, 541.	2.6	14
110	Magnetic resonance imaging-conditional devices: Luxury or real clinical need?. Hellenic Journal of Cardiology, 2017, 58, 256-260.	1.0	14
111	Myocarditis in a patient with Duchenne muscular dystrophy detected by cardiovascular magnetic resonance and cardiac biopsy. International Journal of Cardiology, 2009, 132, e123-e124.	1.7	13
112	Diffuse, subendocardial vasculitis. A new entity identified by cardiovascular magnetic resonance and its clinical implications. International Journal of Cardiology, 2013, 168, 2971-2972.	1.7	13
113	Cardiac profile of asymptomatic children with Becker and Duchenne muscular dystrophy under treatment with steroids and with/without perindopril. BMC Cardiovascular Disorders, 2017, 17, 197.	1.7	13
114	Cardiovascular magnetic resonance in the diagnosis and management of cardiac and vascular involvement in the systemic vasculitides. Current Opinion in Rheumatology, 2019, 31, 16-24.	4.3	13
115	The perpetual sword of Damocles: Cardiac involvement in systemic sclerosis and the role of non-invasive imaging modalities in medical decision making. European Journal of Rheumatology, 2020, 7, 203-211.	0.6	13
116	Pathophysiology and imaging of heart failure in women with autoimmune rheumatic diseases. Heart Failure Reviews, 2019, 24, 489-498.	3.9	12
117	Cardiac Imaging in Liver Transplantation Candidates: Current Knowledge and Future Perspectives. Journal of Clinical Medicine, 2019, 8, 2132.	2.4	12
118	Cardiovascular Involvement in Pediatric Systemic Autoimmune Diseases: The Emerging Role of Noninvasive Cardiovascular Imaging. Inflammation and Allergy: Drug Targets, 2015, 13, 371-381.	1.8	12
119	Edema and fibrosis imaging by cardiovascular magnetic resonance: How can the experience of Cardiology be best utilized in rheumatological practice?. Seminars in Arthritis and Rheumatism, 2014, 44, 76-85.	3.4	11
120	How to approach the great mimic? Improving techniques for the diagnosis of myocarditis. Expert Review of Cardiovascular Therapy, 2016, 14, 105-115.	1.5	11
121	Silent myocarditis in myasthenia gravis. Role of cardiovascular magnetic resonance imaging. International Journal of Cardiology, 2016, 202, 629-630.	1.7	11
122	Systematic Review of PCR Proof of Parvovirus B19 Genomes in Endomyocardial Biopsies of Patients Presenting with Myocarditis or Dilated Cardiomyopathy. Viruses, 2019, 11, 566.	3.3	11
123	Cardio-oncology, the myth of Sisyphus, and cardiovascular disease in breast cancer survivors. Heart Failure Reviews, 2019, 24, 977-987.	3.9	11
124	Advancements in the diagnostic workup, prognostic evaluation, and treatment of takotsubo syndrome. Heart Failure Reviews, 2020, 25, 757-771.	3.9	11
125	Imaging Patterns of Cardiovascular Involvement in Mixed Connective Tissue Disease Evaluated by Cardiovascular Magnetic Resonance. Inflammation and Allergy: Drug Targets, 2016, 14, 111-116.	1.8	11
126	CMR Assessment of Myocarditis in Patients With Cardiac Symptoms During H1N1 Viral Infection. JACC: Cardiovascular Imaging, 2011, 4, 307-309.	5.3	10

#	Article	IF	CITATIONS
127	Ventricular tachycardia in patients with family history of sudden cardiac death, normal coronaries and normal ventricular function. Can cardiac magnetic resonance add to diagnosis?. International Journal of Cardiology, 2013, 168, 1532-1533.	1.7	10
128	Myocardial stress perfusion-fibrosis imaging pattern in sarcoidosis, assessed by cardiovascular magnetic resonance imaging. International Journal of Cardiology, 2014, 172, 501-503.	1.7	10
129	Prospects of using cardiovascular magnetic resonance in the identification of arrhythmogenic substrate in autoimmune rheumatic diseases. Rheumatology International, 2018, 38, 1615-1621.	3.0	10
130	Review on sudden death risk reduction after septal reduction therapies in hypertrophic obstructive cardiomyopathy. Heart Failure Reviews, 2019, 24, 359-366.	3.9	10
131	Combined Brain-Heart Magnetic Resonance Imaging in Autoimmune Rheumatic Disease Patients with Cardiac Symptoms: Hypothesis Generating Insights from a Cross-Sectional Study. Journal of Clinical Medicine, 2020, 9, 447.	2.4	10
132	"Role of cardiovascular magnetic resonance in assessing patients with chest pain, increased troponin levels and normal coronary arteries― Hellenic Journal of Cardiology, 2017, 58, 384-386.	1.0	9
133	Arrhythmogenic Inflammatory Cardiomyopathy in Autoimmune Rheumatic Diseases: A Challenge for Cardio-Rheumatology. Diagnostics, 2019, 9, 217.	2.6	9
134	The pivotal role of cardiovascular imaging in the identification and risk stratification of non-compaction cardiomyopathy patients. Heart Failure Reviews, 2020, 25, 1007-1015.	3.9	9
135	Myocardial Involvement in Rheumatic Disorders. Current Heart Failure Reports, 2020, 17, 171-180.	3.3	9
136	The Double-Edged Sword of T1-Mapping in Systemic Sclerosis—A Comparison with Infectious Myocarditis Using Cardiovascular Magnetic Resonance. Diagnostics, 2020, 10, 335.	2.6	9
137	Cardiovascular Magnetic Resonance Reveals Cardiac Pathophysiology in Autoimmune Rheumatic Diseases. Mediterranean Journal of Rheumatology, 2021, 31, 15.	0.8	9
138	Cardiovascular Imaging in Obesity. Nutrients, 2021, 13, 744.	4.1	9
139	Cardiovascular Magnetic Resonance for Evaluation of Heart Involvement in ANCA-Associated Vasculitis. A Luxury or a Valuable Diagnostic Tool?. Inflammation and Allergy: Drug Targets, 2015, 13, 305-311.	1.8	9
140	Coronary microvascular disease: The "Meeting Point―of Cardiology, Rheumatology and Endocrinology. European Journal of Clinical Investigation, 2022, 52, e13737.	3.4	9
141	EBV Infection as a Cause of VT: Evaluation by CMR. JACC: Cardiovascular Imaging, 2011, 4, 561-562.	5.3	8
142	Cardiac transplantation: towards a new noninvasive approach of cardiac allograft rejection. Expert Review of Cardiovascular Therapy, 2017, 15, 307-313.	1.5	8
143	Streptococcal Tonsillitis and Acute Streptococcal Myocarditis: An Unusual Combination Assessed by Cardiac Magnetic Resonance Imaging and Endomyocardial Biopsy. Annals of Otology, Rhinology and Laryngology, 2012, 121, 604-608.	1.1	7
144	Pleuro-pericarditis, vasculitis, subendocardial and nodular biventricular fibrosis. The multiple faces of systemic sclerosis detected by cardiac magnetic resonance in the same patient. International Journal of Cardiology, 2013, 163, e26-e27.	1.7	7

#	Article	IF	CITATIONS
145	The Sphinx's riddle: cardiovascular involvement in autoimmune rheumatic disease. BMC Cardiovascular Disorders, 2016, 16, 204.	1.7	7
146	Non-traumatic and non-drug-induced rhabdomyolysis. Archives of Medical Sciences Atherosclerotic Diseases, 2019, 4, 252-263.	1.0	7
147	Cardiovascular disease in women: Executive summary of the expert panel statement of women in cardiology of the hellenic cardiological society. Hellenic Journal of Cardiology, 2020, 61, 362-377.	1.0	7
148	Cardiac amyloidosis: in search of the ideal diagnostic tool. Herz, 2021, 46, 9-14.	1.1	7
149	Evaluation of myocardial iron overload using cardiovascular magnetic resonance imaging. Hellenic Journal of Cardiology, 2011, 52, 385-90.	1.0	7
150	Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics, 2022, 12, 1543.	2.6	7
151	"The silence of lambsâ€: International Journal of Cardiology, 2013, 168, 2901-2902.	1.7	6
152	The emerging role of cardiovascular magnetic resonance imaging in the assessment of cardiac involvement in juvenile idiopathic arthritis. Rheumatology International, 2018, 38, 1355-1362.	3.0	6
153	Cardiovascular Disease in the Systemic Vasculitides. Current Vascular Pharmacology, 2020, 18, 463-472.	1.7	6
154	Combined Brain/Heart Magnetic Resonance Imaging in Systemic Lupus Erythematosus. Current Cardiology Reviews, 2020, 16, 178-186.	1.5	6
155	"How many times must a man look up before he can really see the sky?―Rheumatic cardiovascular disease in the era of multimodality imaging. World Journal of Methodology, 2015, 5, 136.	3.5	6
156	Why currently used diagnostic techniques for heart failure in rheumatoid arthritis are not enough: the challenge of cardiovascular magnetic resonance imaging. Reviews in Cardiovascular Medicine, 2014, 15, 320-31.	1.4	6
157	Systemic Vasculitis: An Underestimated Cause of Heart Failure—Assessment by Cardiovascular Magnetic Resonance. Reviews in Cardiovascular Medicine, 2013, 14, 49-55.	1.4	6
158	Coronary Artery Abnormalities in CREST Syndrome Revealed by Cardiovascular Magnetic Resonance Imaging. Canadian Journal of Cardiology, 2011, 27, 390.e5-390.e7.	1.7	5
159	Cardiovascular Magnetic Resonance as Pathophysiologic Tool in Diabetes Mellitus. Frontiers in Endocrinology, 2021, 12, 672302.	3.5	5
160	Myocardial fibrosis after COVID-19 infection and severe sinus arrest episodes in an asymptomatic patient with mild sleep apnea syndrome: A case report and review of the literature. Respiratory Medicine Case Reports, 2021, 32, 101366.	0.4	5
161	Cardiac Remodeling in Hypertension: Clinical Impact on Brain, Heart, and Kidney Function. Hormone and Metabolic Research, 2022, 54, 273-279.	1.5	5
162	Cardiovascular/Stroke Risk Assessment in Patients with Erectile Dysfunction—A Role of Carotid Wall Arterial Imaging and Plaque Tissue Characterization Using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics, 2022, 12, 1249.	2.6	5

#	Article	IF	CITATIONS
163	Stress cardiac magnetic resonance reveals myocardial perfusion impairment in asymptomatic diabetes mellitus type I, missed by the routine non-invasive evaluation. International Journal of Cardiology, 2013, 167, e167-e169.	1.7	4
164	Cardiac involvement in ankylosing spondylitis. Can new magnetic resonance indices interpret cardiac pathophysiology beyond echocardiography?. Heart, 2017, 103, 736-737.	2.9	4
165	Brain and heart magnetic resonance imaging/spectroscopy in duchenne muscular dystrophy. European Journal of Clinical Investigation, 2017, 47, e12842.	3.4	4
166	Combined brain/heart magnetic resonance imaging in antiphospholipid syndrome-two sides of the same coin. Clinical Rheumatology, 2021, 40, 2559-2568.	2.2	4
167	Imaging modalities for cardiovascular phenotyping in asymptomatic people living with HIV. Vascular Medicine, 2021, 26, 326-337.	1.5	4
168	Comparison of myocardial and hepatic iron loading, assessed by MRI T2*, in patients with myelodysplastic syndromes, thalassaemia major and controls. Blood Transfusion, 2012, 10, 237-40.	0.4	4
169	Combined brain and heart magnetic resonance imaging in systemic vasculitides: fiction or real need?. Clinical and Experimental Rheumatology, 2018, 36 Suppl 111, 152-159.	0.8	4
170	A Churg–Strauss syndrome patient with myopericardial involvement. Journal of Cardiology Cases, 2015, 11, 52-55.	0.5	3
171	Is there a place for cardiovascular magnetic resonance conditional devices in systemic inflammatory diseases?. Expert Review of Cardiovascular Therapy, 2016, 14, 677-682.	1.5	3
172	Friedreich's Ataxia: Case series and the Additive Value of Cardiovascular Magnetic Resonance. Journal of Neuromuscular Diseases, 2020, 7, 61-67.	2.6	3
173	Is There a Brain/Heart Interaction in Rheumatoid Arthritis and Seronegative Spondyloartropathies? A Combined Brain/Heart Magnetic Resonance Imaging Reveals the Answer. Current Rheumatology Reports, 2020, 22, 39.	4.7	3
174	Cutting the "Gordian Knot―— Cardiac Involvement in Primary Sjögren Syndrome. Journal of Rheumatology, 2021, 48, 802-803.	2.0	3
175	Reduced global longitudinal strain at rest and inadequate blood pressure response during exercise treadmill testing in male heterozygous familial hypercholesterolemia patients. International Journal of Cardiology: Hypertension, 2021, 9, 100083.	2.2	3
176	Cardiovascular magnetic resonance clarifies arrhythmogenicity in asymptomatic young athletes with ventricular arrhythmias undergoing preâ€ʿparticipation evaluation. Experimental and Therapeutic Medicine, 2020, 20, 561-571.	1.8	3
177	Cardiovascular Magnetic Resonance Detects Inflammatory Cardiomyopathy in Symptomatic Patients with Inflammatory Joint Diseases and a Normal Routine Workup. Journal of Clinical Medicine, 2022, 11, 1428.	2.4	3
178	Subclinical Left Ventricular Systolic Dysfunction in HIV Patients: Prevalence and Associations with Carotid Atherosclerosis and Increased Adiposity. Journal of Clinical Medicine, 2022, 11, 1804.	2.4	3
179	Cardiac magnetic resonance for early detection and risk stratification of patients with nonâ€compaction cardiomyopathy. European Journal of Heart Failure, 2011, 13, 1153-1154.	7.1	2
180	"All roads lead to Rome―ventricular tachycardia due to right ventricle involvement in autoimmune and non-autoimmune disease. International Journal of Cardiology, 2014, 173, 126-127.	1.7	2

#	Article	IF	CITATIONS
181	Extracardiac findings in cardiovascular magnetic resonance. A scientific curiosity or a real need?. Hellenic Journal of Cardiology, 2016, 57, 261-262.	1.0	2
182	Takotsubo syndrome – adding pieces to a complex puzzle. BMC Cardiovascular Disorders, 2017, 17, 296.	1.7	2
183	Clinical Use of Cardiac Magnetic Resonance in Systemic Heart Disease. European Cardiology Review, 2014, 9, 21.	2.2	2
184	Clinical Queries Addressed in Patients with Systemic Autoimmune Diseases. Can Cardiovascular Magnetic Resonance Give the Final Solution?. Inflammation and Allergy: Drug Targets, 2015, 13, 335-338.	1.8	2
185	Assessment of cardiovascular involvement in Connective Tissue Disease: Let's open Pandora's box. Mediterranean Journal of Rheumatology, 2016, 27, 91-93.	0.8	2
186	Systemic lupus erythematosus with antiphospholipid syndrome: Cardiovascular magnetic resonance for evaluation of cardiac hypertrophy. Mediterranean Journal of Rheumatology, 2017, 28, 221-222.	0.8	2
187	Stress perfusion Cardiac Magnetic Resonance in Patients with Antiphospholipid Syndrome. Mediterranean Journal of Rheumatology, 2018, 29, 99-102.	0.8	2
188	Lipoprotein apheresis: a Hellenic consensus on its clinical use. Hellenic Journal of Cardiology, 2021, 62, 460-462.	1.0	2
189	Clinical Implications of MRI To Assess Cardiac and Pulmonary Function in Patients With Duchenne Muscular Dystrophy: Response. Chest, 2010, 138, 757.	0.8	1
190	Stress perfusion–fibrosis cardiac magnetic resonance detects early heart involvement in young asymptomatic, homozygous familial hyperlipidemia with normal routine non-invasive evaluation. International Journal of Cardiology, 2013, 168, 4570-4572.	1.7	1
191	Cardiovascular Magnetic Resonance for Early Atherosclerosis Detection. Hypertension, 2015, 65, 985-986.	2.7	1
192	Diffuse, Subendocardial Vasculitis Identified by Cardiovascular Magnetic Resonance. Use of Images to Learn Pathophysiology. Journal of Phonetics & Audiology, 2016, 2, .	0.2	1
193	Transplantation in patients with iron overload: is there a place for magnetic resonance imaging?. Heart Failure Reviews, 2018, 23, 173-180.	3.9	1
194	Cardiac Disease in Rheumatoid Arthritis — Can Cardiovascular Magnetic Resonance Imaging Depict the Janus Duality?. Journal of Rheumatology, 2018, 45, 1073-1074.	2.0	1
195	"The discreet charm―of cardiovascular disease in Rheumatoid arthritis. Hellenic Journal of Cardiology, 2019, 60, 36-37.	1.0	1
196	Authorsâ€~ response to the letter on HREV-D-19-00059R-1: Advancements in the diagnostic workup, prognostic evaluation and treatment of Takotsubo syndrome. Heart Failure Reviews, 2020, 25, 887-889.	3.9	1
197	Current understanding and future perspectives of brain–heart–kidney axis in psoriatic arthritis. Rheumatology International, 2020, 40, 1361-1368.	3.0	1
198	Ventricular Tachycardia Has Mainly Non-Ischaemic Substrates in Patients with Autoimmune Rheumatic Diseases and a Preserved Ejection Fraction. Diagnostics, 2021, 11, 519.	2.6	1

#	Article	IF	CITATIONS
199	"Save the Last Dance―for Cardiovascular Magnetic Resonance. European Cardiology Review, 2018, 13, 95.	2.2	1
200	Cardiac Inflammation/Fibrosis in systemic sclerosis: "A journey of a thousand miles begins with a single step― Rheumatology, 2021, , .	1.9	1
201	Evaluation of myocardial and hepatic iron loading by MRI T2* in multi-transfused patients with repeated blood loss as compared to thalassaemia major patients and controls. Blood Transfusion, 2011, 9, 343-5.	0.4	1
202	Myocardial inflammation in polymyalgia rheumatica assessed using cardiac magnetic resonance imaging. Experimental and Clinical Cardiology, 2013, 18, 151-2.	1.3	1
203	Myocarditis in systemic diseases and the role of cardiovascular magnetic resonance. Hellenic Journal of Cardiology, 2012, 53, 142-7.	1.0	1
204	Cardiac magnetic resonance in myocarditis. What we know and what we have to learn. European Journal of Heart Failure, 2011, 13, 1381-1381.	7.1	0
205	Deciphering Cardiovascular Disease in Systemic Inflammatory Diseases Using Advanced Magnetic Resonance Imaging. Current Cardiovascular Imaging Reports, 2015, 8, 1.	0.6	0
206	Correspondence IJC-D-16-00080. International Journal of Cardiology, 2016, 209, 344-345.	1.7	0
207	Early coronary artery disease â^ Usual and unusual suspects. International Journal of Cardiology, 2016, 202, 511.	1.7	0
208	Fighting the "Lernaean Hydra―of systemic immune-mediated diseases. International Journal of Cardiology, 2019, 280, 133-134.	1.7	0
209	Tissue Characterization in Cardiology: Moving Beyond Function. Advances in Experimental Medicine and Biology, 2021, 1337, 89-97.	1.6	0
210	Myocardial ischemia and viability by cardiac magnetic resonance: the international experience and the Greek reality. Hellenic Journal of Cardiology, 2012, 53, 55-62.	1.0	0