Fei Hui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/770262/publications.pdf Version: 2024-02-01

Fer Hur

#	Article	IF	CITATIONS
1	Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device. Nanotechnology, 2022, 33, 465601.	2.6	7
2	Inkjet Printing: A Cheap and Easyâ€ŧoâ€IJse Alternative to Wire Bonding for Academics. Crystal Research and Technology, 2022, 57, 2100210.	1.3	1
3	Time series modeling of the cycle-to-cycle variability in h-BN based memristors. , 2021, , .		2
4	Inkjet Printed Circuits with 2D Semiconductor Inks for Highâ€Performance Electronics. Advanced Electronic Materials, 2021, 7, 2100112.	5.1	46
5	Advanced Data Encryption ‫using 2D Materials. Advanced Materials, 2021, 33, e2100185.	21.0	67
6	In Situ Observation of Lowâ€Power Nano‣ynaptic Response in Graphene Oxide Using Conductive Atomic Force Microscopy. Small, 2021, 17, e2101100.	10.0	22
7	A Review on Dielectric Breakdown in Thin Dielectrics: Silicon Dioxide, Highâ€ <i>k</i> , and Layered Dielectrics. Advanced Functional Materials, 2020, 30, 1900657.	14.9	119
8	Emerging Scanning Probe–Based Setups for Advanced Nanoelectronic Research. Advanced Functional Materials, 2020, 30, 1902776.	14.9	7
9	A Review on Principles and Applications of Scanning Thermal Microscopy (SThM). Advanced Functional Materials, 2020, 30, 1900892.	14.9	98
10	Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nature Electronics, 2020, 3, 638-645.	26.0	222
11	150Ânm × 200Ânm Crossâ€Point Hexagonal Boron Nitrideâ€Based Memristors. Advanced Electronic Materials, 2020, 6, 1900115.	5.1	22
12	Reversible dielectric breakdown in h-BN stacks: a statistical study of the switching voltages. , 2020, , .		0
13	Influence of the magnetic field on dielectric breakdown in memristors based on h-BN stacks. , 2020, , .		Ο
14	150 nm ${\rm \tilde{A}}-$ 200 nm cross point hexagonal boron nitride based memristors with ultra-low currents in high resistive state. , 2019, , .		3
15	Variability of metal/h-BN/metal memristors grown via chemical vapor deposition on different materials. Microelectronics Reliability, 2019, 102, 113410.	1.7	17
16	Recommended Methods to Study Resistive Switching Devices. Advanced Electronic Materials, 2019, 5, 1800143.	5.1	452
17	Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale, 2018, 10, 5522-5531.	5.6	28
18	Synthesis of large-area multilayer hexagonal boron nitride sheets on iron substrates and its use in resistive switching devices. 2D Materials, 2018, 5, 031011.	4.4	45

Fei Hui

#	Article	IF	CITATIONS
19	Electronic synapses made of layered two-dimensional materials. Nature Electronics, 2018, 1, 458-465.	26.0	459
20	Coexistence of Grainâ€Boundariesâ€Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride. Advanced Functional Materials, 2017, 27, 1604811.	14.9	229
21	Resistive Switching: Coexistence of Grainâ€Boundariesâ€Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride (Adv. Funct. Mater. 10/2017). Advanced Functional Materials, 2017, 27, .	14.9	4
22	Model for multi-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices. 2D Materials, 2017, 4, 025099.	4.4	51
23	Graphene and Related Materials for Resistive Random Access Memories. Advanced Electronic Materials, 2017, 3, 1600195.	5.1	175
24	Resistive Random Access Memory Cells with a Bilayer TiO ₂ /SiO <i>_X</i> Insulating Stack for Simultaneous Filamentary and Distributed Resistive Switching. Advanced Functional Materials, 2017, 27, 1700384.	14.9	70
25	On the use of two dimensional hexagonal boron nitride as dielectric. Microelectronic Engineering, 2016, 163, 119-133.	2.4	96
26	(Invited) Elucidating the Origin of Resistive Switching in Ultrathin Hafnium Oxides through High Spatial Resolution Tools. ECS Transactions, 2014, 64, 19-28.	0.5	13