Naomi Kleitman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7702454/publications.pdf

Version: 2024-02-01

32 papers

2,867 citations

394421 19 h-index 28 g-index

33 all docs 33 docs citations

33 times ranked 2042 citing authors

#	Article	IF	CITATIONS
1	Promoting FAIR Data Through Community-driven Agile Design: the Open Data Commons for Spinal Cord Injury (odc-sci.org). Neuroinformatics, 2022, 20, 203-219.	2.8	10
2	Experimental Treatments for Spinal Cord Injury: What you Should Know. Topics in Spinal Cord Injury Rehabilitation, 2021, 27, 50-74.	1.8	10
3	Recommendations for evaluation of bladder and bowel function in pre-clinical spinal cord injury research. Journal of Spinal Cord Medicine, 2020, 43, 165-176.	1.4	11
4	FAIR SCI Ahead: The Evolution of the Open Data Commons for Pre-Clinical Spinal Cord Injury Research. Journal of Neurotrauma, 2020, 37, 831-838.	3.4	27
5	The challenge of recruitment for neurotherapeutic clinical trials in spinal cord injury. Spinal Cord, 2019, 57, 348-359.	1.9	37
6	Considerations and recommendations for selection and utilization of upper extremity clinical outcome assessments in human spinal cord injury trials. Spinal Cord, 2018, 56, 414-425.	1.9	24
7	Lower extremity outcome measures: considerations for clinical trials in spinal cord injury. Spinal Cord, 2018, 56, 628-642.	1.9	23
8	Translating promising strategies for bowel and bladder management in spinal cord injury. Experimental Neurology, 2018, 306, 169-176.	4.1	44
9	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	4.1	75
10	Replication and reproducibility in spinal cord injury research. Experimental Neurology, 2012, 233, 597-605.	4.1	157
11	Outcome Measures for Acute/Subacute Cervical Sensorimotor Complete (AIS-A) Spinal Cord Injury During a Phase 2 Clinical Trial. Topics in Spinal Cord Injury Rehabilitation, 2012, 18, 1-14.	1.8	44
12	Using the Spinal Cord Injury Common Data Elements. Topics in Spinal Cord Injury Rehabilitation, 2012, 18, 23-27.	1.8	22
13	New functional electrical stimulation approaches to standing and walking. Journal of Neural Engineering, 2007, 4, S181-S197.	3.5	107
14	Advances in neural interfaces: report from the 2006 NIH Neural Interfaces Workshop. Journal of Neural Engineering, 2007, 4, S137-S142.	3.5	5
15	Toward Neurotechnology Innovation: Report from the 2005 Neural Interfaces Workshop. An NIH-Sponsored Event. Neuromodulation, 2006, 9, 1-7.	0.8	7
16	Keeping Promises: Translating Basic Research Into New Spinal Cord Injury Therapies. Journal of Spinal Cord Medicine, 2004, 27, 311-318.	1.4	25
17	Methylprednisolone and Interleukin-10 Reduce Gray Matter Damage in the Contused Fischer Rat Thoracic Spinal Cord but Do Not Improve Functional Outcome. Journal of Neurotrauma, 2002, 19, 653-666.	3.4	97
18	Schwann Cell But Not Olfactory Ensheathing Glia Transplants Improve Hindlimb Locomotor Performance in the Moderately Contused Adult Rat Thoracic Spinal Cord. Journal of Neuroscience, 2002, 22, 6670-6681.	3.6	446

#	Article	lF	Citations
19	Under One Roof: The Miami Project to Cure Paralysis Model for Spinal Cord Injury Research. Neuroscientist, 2001, 7, 192-201.	3.5	3
20	TRANSPLANTATION STRATEGIES FOR TREATMENT OF SPINAL CORD DYSFUNCTION AND INJURY. , 2000, , 799-820.		2
21	Neurotrophins and Neuroprotection Improve Axonal Regeneration into Schwann Cell Transplants Placed in Transected Adult Rat Spinal Cord. , 1999, , 631-646.		9
22	Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. Journal of Neurocytology, 1997, 26, 1-16.	1.5	336
23	A combination of insulin-like growth factor-I and platelet-derived growth factor enhances myelination but diminishes axonal regeneration into Schwann cell grafts in the adult rat spinal cord. , 1997, 19, 247-258.		78
24	Schwann Cells as Facilitators of Axonal Regeneration in CNS Fiber Tracts., 1997,, 319-333.		2
25	Methylprednisolone Administration Improves Axonal Regeneration into Schwann Cell Grafts in Transected Adult Rat Thoracic Spinal Cord. Experimental Neurology, 1996, 138, 261-276.	4.1	163
26	Axonal regeneration into Schwann cellâ€seeded guidance channels grafted into transected adult rat spinal cord. Journal of Comparative Neurology, 1995, 351, 145-160.	1.6	471
27	A Combination of BDNF and NT-3 Promotes Supraspinal Axonal Regeneration into Schwann Cell Grafts in Adult Rat Thoracic Spinal Cord. Experimental Neurology, 1995, 134, 261-272.	4.1	437
28	The Schwann cell: Morphology and development. , 1995, , 97-115.		12
29	Isolation and characterization of conditionally immortalized astrocyte cell lines derived from adult human spinal cord. Glia, 1994, 10, 211-226.	4.9	51
30	Role of Peripheral Nerve Extracellular Matrix in Schwann Cell Function and in Neurite Regeneration. Developmental Neuroscience, 1989, 11, 348-360.	2.0	106
31	Chapter 40 Culture preparations of neuroglial cells useful for studies of myelin repair and axonal regeneration in the central nervous system. Progress in Brain Research, 1988, 78, 321-326.	1.4	3
32	Chapter 6 Factors influencing the growth of regenerating nerve fibers in culture. Progress in Brain Research, 1987, 71, 61-74.	1.4	17