
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7701094/publications.pdf Version: 2024-02-01

WEN-HSUINC LL

#	Article	IF	CITATIONS
1	The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 1987, 15, 1281-1295.	14.5	3,290
2	Unbiased estimation of the rates of synonymous and nonsynonymous substitution. Journal of Molecular Evolution, 1993, 36, 96-99.	1.8	1,049
3	Comparative Analysis of the Receptor-Like Kinase Family in Arabidopsis and Rice[W]. Plant Cell, 2004, 16, 1220-1234.	6.6	980
4	An evolutionary perspective on synonymous codon usage in unicellular organisms. Journal of Molecular Evolution, 1986, 24, 28-38.	1.8	801
5	Role of duplicate genes in genetic robustness against null mutations. Nature, 2003, 421, 63-66.	27.8	790
6	Genomic Divergences between Humans and Other Hominoids and the Effective Population Size of the Common Ancestor of Humans and Chimpanzees. American Journal of Human Genetics, 2001, 68, 444-456.	6.2	662
7	Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiology, 2009, 151, 2120-2132.	4.8	631
8	Human polymorphism at microRNAs and microRNA target sites. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3300-3305.	7.1	616
9	Mutation rates differ among regions of the mammalian genome. Nature, 1989, 337, 283-285.	27.8	599
10	Codon usage in regulatory genes in <i>Escherichia coli</i> does not reflect selection for â€~rare' codons. Nucleic Acids Research, 1986, 14, 7737-7749.	14.5	530
11	Pseudogenes as a paradigm of neutral evolution. Nature, 1981, 292, 237-239.	27.8	487
12	An evaluation of the molecular clock hypothesis using mammalian DNA sequences. Journal of Molecular Evolution, 1987, 25, 330-342.	1.8	456
13	Evolutionary analyses of the human genome. Nature, 2001, 409, 847-849.	27.8	442
14	Patterns of nucleotide substitution in pseudogenes and functional genes. Journal of Molecular Evolution, 1982, 18, 360-369.	1.8	438
15	Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100. Nature, 1986, 323, 738-742.	27.8	431
16	Extent of Gene Duplication in the Genomes of Drosophila, Nematode, and Yeast. Molecular Biology and Evolution, 2002, 19, 256-262.	8.9	422
17	The molecular clock runs more slowly in man than in apes and monkeys. Nature, 1987, 326, 93-96.	27.8	396
18	Dating the Monocot?Dicot Divergence and the Origin of Core Eudicots Using Whole Chloroplast Genomes. Journal of Molecular Evolution, 2004, 58, 424-441.	1.8	389

#	Article	IF	CITATIONS
19	Transposable elements are found in a large number of human protein-coding genes. Trends in Genetics, 2001, 17, 619-621.	6.7	383
20	Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. Journal of Molecular Evolution, 1984, 21, 58-71.	1.8	362
21	Rates of Nucleotide Substitution in Angiosperm Mitochondrial DNA Sequences and Dates of Divergence Between Brassica and Other Angiosperm Lineages. Journal of Molecular Evolution, 1999, 48, 597-604.	1.8	343
22	On the rate of DNA sequence evolution inDrosophila. Journal of Molecular Evolution, 1989, 28, 398-402.	1.8	321
23	Expression divergence between duplicate genes. Trends in Genetics, 2005, 21, 602-607.	6.7	321
24	Is the guinea-pig a rodent?. Nature, 1991, 351, 649-652.	27.8	318
25	Mammalian Housekeeping Genes Evolve More Slowly than Tissue-Specific Genes. Molecular Biology and Evolution, 2004, 21, 236-239.	8.9	318
26	Rates of Nucleotide Substitution in Primates and Rodents and the Generation–Time Effect Hypothesis. Molecular Phylogenetics and Evolution, 1996, 5, 182-187.	2.7	316
27	Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6496-505.	7.1	313
28	LINKAGE DISEQUILIBRIUM IN SUBDIVIDED POPULATIONS. Genetics, 1973, 75, 213-219.	2.9	288
29	Rapid divergence in expression between duplicate genes inferred from microarray data. Trends in Genetics, 2002, 18, 609-613.	6.7	286
30	High Polymorphism at the Human Melanocortin 1 Receptor Locus. Genetics, 1999, 151, 1547-1557.	2.9	258
31	Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. Journal of Molecular Evolution, 1987, 24, 337-345.	1.8	251
32	The KA/KS Ratio Test for Assessing the Protein-Coding Potential of Genomic Regions: An Empirical and Simulation Study. Genome Research, 2002, 12, 198-202.	5.5	233
33	Male-driven evolution of DNA sequences. Nature, 1993, 362, 745-747.	27.8	230
34	Strong male-driven evolution of DNA sequences in humans and apes. Nature, 2002, 416, 624-626.	27.8	226
35	Transcription Factor Families Have Much Higher Expansion Rates in Plants than in Animals. Plant Physiology, 2005, 139, 18-26.	4.8	218
36	Divergence in the Spatial Pattern of Gene Expression Between Human Duplicate Genes. Genome Research, 2003, 13, 1638-1645.	5.5	212

#	Article	IF	CITATIONS
37	Structure and evolution of the apolipoprotein multigene family. Journal of Molecular Biology, 1986, 187, 325-340.	4.2	210
38	Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6283-6288.	7.1	210
39	Male-driven evolution. Current Opinion in Genetics and Development, 2002, 12, 650-656.	3.3	206
40	Rates of synonymous substitution in plant nuclear genes. Journal of Molecular Evolution, 1989, 29, 208-211.	1.8	179
41	Larger Genetic Differences Within Africans Than Between Africans and Eurasians. Genetics, 2002, 161, 269-274.	2.9	178
42	Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO Journal, 2011, 30, 4500-4514.	7.8	175
43	Duplicate genes increase gene expression diversity within and between species. Nature Genetics, 2004, 36, 577-579.	21.4	170
44	Estimation of Confidence in Phylogeny: The Complete-and-Partial Bootstrap Technique. Molecular Phylogenetics and Evolution, 1995, 4, 44-63.	2.7	168
45	Trichromatic vision in prosimians. Nature, 1999, 402, 36-36.	27.8	167
46	RATE OF GENE SILENCING AT DUPLICATE LOCI: A THEORETICAL STUDY AND INTERPRETATION OF DATA FROM TETRAPLOID FISHES. Genetics, 1980, 95, 237-258.	2.9	162
47	A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Research, 2007, 17, 632-640.	5.5	157
48	Natural selection on <i>cis</i> and <i>trans</i> regulation in yeasts. Genome Research, 2010, 20, 826-836.	5.5	156
49	Characterizing Regulatory and Functional Differentiation between Maize Mesophyll and Bundle Sheath Cells by Transcriptomic Analysis Â. Plant Physiology, 2012, 160, 165-177.	4.8	156
50	Accumulation of mutations in sexual and asexual populations. Genetical Research, 1987, 49, 135-146.	0.9	153
51	Evolutionary Diversification of DNA Methyltransferases in Eukaryotic Genomes. Molecular Biology and Evolution, 2005, 22, 1119-1128.	8.9	153
52	MicroRNA regulation of human protein–protein interaction network. Rna, 2007, 13, 1402-1408.	3.5	153
53	Molecular evolution of trichromacy in primates. Vision Research, 1998, 38, 3299-3306.	1.4	151
54	The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. Journal of Molecular Evolution, 1995, 40, 464-473.	1.8	145

#	Article	IF	CITATIONS
55	Selective Constraints, Amino Acid Composition, and the Rate of Protein Evolution. Molecular Biology and Evolution, 2000, 17, 656-664.	8.9	144
56	Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature, 2002, 418, 323-324.	27.8	141
57	Coordinated histone modifications are associated with gene expression variation within and between species. Genome Research, 2011, 21, 590-598.	5.5	140
58	Evidence from opsin genes rejects nocturnality in ancestral primates. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14712-14716.	7.1	139
59	DISTRIBUTION OF NUCLEOTIDE DIFFERENCES BETWEEN TWO RANDOMLY CHOSEN CISTRONS IN A FINITE POPULATION. Genetics, 1977, 85, 331-337.	2.9	138
60	Deletions in processed pseudogenes accumulate faster in rodents than in humans. Journal of Molecular Evolution, 1989, 28, 279-285.	1.8	133
61	Low Nucleotide Diversity in Chimpanzees and Bonobos. Genetics, 2003, 164, 1511-1518.	2.9	133
62	Coalescing into the 21st Century: An Overview and Prospects of Coalescent Theory. Theoretical Population Biology, 1999, 56, 1-10.	1.1	132
63	Slow Molecular Clocks in Old World Monkeys, Apes, and Humans. Molecular Biology and Evolution, 2002, 19, 2191-2198.	8.9	129
64	Different evolutionary patterns between young duplicate genes in the human genome. Genome Biology, 2003, 4, R56.	9.6	128
65	Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biology, 2006, 7, R87.	9.6	124
66	Down-Regulation of Cytokinin Oxidase 2 Expression Increases Tiller Number and Improves Rice Yield. Rice, 2015, 8, 36.	4.0	123
67	Molecular evolution meets the genomics revolution. Nature Genetics, 2003, 33, 255-265.	21.4	120
68	DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nature Communications, 2012, 3, 1004.	12.8	120
69	Opsin gene and photopigment polymorphism in a prosimian primate. Vision Research, 2002, 42, 11-18.	1.4	119
70	Inheritance of Gene Expression Level and Selective Constraints on Trans- and Cis-Regulatory Changes in Yeast. Molecular Biology and Evolution, 2013, 30, 2121-2133.	8.9	113
71	Stable linkage disequilibrium without epistasis in subdivided populations. Theoretical Population Biology, 1974, 6, 173-183.	1.1	111
72	Evolution of DNA Sequences. , 1985, , 1-94.		108

#	Article	IF	CITATIONS
73	Patterns of Segmental Duplication in the Human Genome. Molecular Biology and Evolution, 2004, 22, 135-141.	8.9	107
74	Gene essentiality, gene duplicability and protein connectivity in human and mouse. Trends in Genetics, 2007, 23, 375-378.	6.7	107
75	CpG island density and its correlations with genomic features in mammalian genomes. Genome Biology, 2008, 9, R79.	9.6	107
76	Drift variances of heterozygosity and genetic distance in transient states. Genetical Research, 1975, 25, 229-247.	0.9	106
77	Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13749-13754.	7.1	101
78	Organismal complexity, protein complexity, and gene duplicability. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15661-15665.	7.1	100
79	RNA landscape of evolution for optimal exon and intron discrimination. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5797-5802.	7.1	99
80	What Amino Acid Properties Affect Protein Evolution?. Journal of Molecular Evolution, 1998, 47, 557-564.	1.8	98
81	Molecular Systematics of Pikas (Genus Ochotona) Inferred from Mitochondrial DNA Sequences. Molecular Phylogenetics and Evolution, 2000, 16, 85-95.	2.7	98
82	Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature, 1989, 339, 145-147.	27.8	97
83	Inconsistency of the Maximum-parsimony Method: the Case of Five Taxa With a Molecular Clock. Systematic Biology, 1993, 42, 113-125.	5.6	97
84	Historical contingency in the evolution of primate color vision. Journal of Human Evolution, 2003, 44, 25-45.	2.6	96
85	Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. Journal of Molecular Evolution, 1987, 25, 58-64.	1.8	95
86	Mouse Very-Low-Density-Lipoprotein Receptor (VLDLR) cDNA Cloning, Tissue-specific Expression and Evolutionary Relationship with the Low-density-lipoprotein Receptor. FEBS Journal, 1994, 224, 975-982.	0.2	95
87	Statistical methods for identifying yeast cell cycle transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13532-13537.	7.1	94
88	Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics, 2004, 20, 1914-1927.	4.1	93
89	Densities, length proportions, and other distributional features of repetitive sequences in the human genome estimated from 430 megabases of genomic sequence. Gene, 2000, 259, 81-88.	2.2	91
90	Signatures of Domain Shuffling in the Human Genome. Genome Research, 2002, 12, 1642-1650.	5.5	91

#	Article	IF	CITATIONS
91	Multidimensional scaling for large genomic data sets. BMC Bioinformatics, 2008, 9, 179.	2.6	91
92	Rate of Protein Evolution Versus Fitness Effect of Gene Deletion. Molecular Biology and Evolution, 2003, 20, 772-774.	8.9	89
93	Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation. Journal of Ethnopharmacology, 2011, 136, 168-177.	4.1	89
94	Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Scientific Reports, 2016, 6, 25164.	3.3	89
95	Alternative mRNA Splicing and Differential Promoter Utilization Determine Tissue-specific Expression of the Apolipoprotein B mRNA-editing Protein (Apobec1) Gene in Mice Journal of Biological Chemistry, 1995, 270, 13042-13056.	3.4	88
96	Intragenic Spatial Patterns of Codon Usage Bias in Prokaryotic and Eukaryotic Genomes. Genetics, 2004, 168, 2245-2260.	2.9	88
97	Proportion of Solvent-Exposed Amino Acids in a Protein and Rate of Protein Evolution. Molecular Biology and Evolution, 2007, 24, 1005-1011.	8.9	88
98	The Chicken Frizzle Feather Is Due to an α-Keratin (KRT75) Mutation That Causes a Defective Rachis. PLoS Genetics, 2012, 8, e1002748.	3.5	88
99	MAINTENANCE OF GENETIC VARIABILITY UNDER THE JOINT EFFECT OF MUTATION, SELECTION AND RANDOM DRIFT. Genetics, 1978, 90, 349-382.	2.9	87
100	Molecular Evolution of Bat Color Vision Genes. Molecular Biology and Evolution, 2003, 21, 295-302.	8.9	86
101	Lowly Expressed Human MicroRNA Genes Evolve Rapidly. Molecular Biology and Evolution, 2009, 26, 1195-1198.	8.9	86
102	Non-random association between electromorphs and inversion chromosomes in finite populations. Genetical Research, 1980, 35, 65-83.	0.9	85
103	Molecular Phylogenetic Studies of Brassica,Rorippa,Arabidopsis and Allied Genera Based on the Internal Transcribed Spacer Region of 18S–25S rDNA. Molecular Phylogenetics and Evolution, 1999, 13, 455-462.	2.7	85
104	Nucleotide Diversity in Gorillas. Genetics, 2004, 166, 1375-1383.	2.9	85
105	Expansion of Hexose Transporter Genes Was Associated with the Evolution of Aerobic Fermentation in Yeasts. Molecular Biology and Evolution, 2011, 28, 131-142.	8.9	82
106	The molecular clock ticks regularly in muroid rodents and hamsters. Journal of Molecular Evolution, 1992, 35, 377-84.	1.8	81
107	Evolutionary Persistence of Functional Compensation by Duplicate Genes in Arabidopsis. Genome Biology and Evolution, 2009, 1, 409-414.	2.5	81
108	Higher rates of amino acid substitution in rodents than in humans. Molecular Phylogenetics and Evolution, 1992, 1, 211-214.	2.7	80

#	Article	IF	CITATIONS
109	Gene admixture in the Silk Road region of China: Evidence from mtDNA and melanocortin 1 receptor polymorphism Genes and Genetic Systems, 2000, 75, 173-178.	0.7	79
110	Role of positive selection in the retention of duplicate genes in mammalian genomes. Proceedings of the United States of America, 2006, 103, 2232-2236.	7.1	79
111	Human TRIM71 and Its Nematode Homologue Are Targets of let-7 MicroRNA and Its Zebrafish Orthologue Is Essential for Development. Molecular Biology and Evolution, 2007, 24, 2525-2534.	8.9	79
112	Genomic and transcriptomic analyses of the medicinal fungus <i>Antrodia cinnamomea</i> for its metabolite biosynthesis and sexual development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4743-52.	7.1	79
113	Studying Tumorigenesis through Network Evolution and Somatic Mutational Perturbations in the Cancer Interactome. Molecular Biology and Evolution, 2014, 31, 2156-2169.	8.9	79
114	The Nonsynonymous/Synonymous Substitution Rate Ratio versus the Radical/Conservative Replacement Rate Ratio in the Evolution of Mammalian Genes. Molecular Biology and Evolution, 2007, 24, 2235-2241.	8.9	77
115	Evolution of paired domains: Isolation and sequencing of jellyfish and hydra Pax genes related to Pax-5 and Pax-6. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5156-5161.	7.1	76
116	Functional Compensation of Primary and Secondary Metabolites by Duplicate Genes in Arabidopsis thaliana. Molecular Biology and Evolution, 2011, 28, 377-382.	8.9	76
117	The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Scientific Reports, 2017, 7, 15568.	3.3	76
118	Protein Function, Connectivity, and Duplicability in Yeast. Molecular Biology and Evolution, 2006, 23, 30-39.	8.9	74
119	Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnology for Biofuels, 2011, 4, 24.	6.2	74
120	Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3979-3984.	7.1	74
121	Topographical mapping of α- and β-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6770-9.	7.1	74
122	Evolution of the Hominoid Semenogelin Genes, the Major Proteins of Ejaculated Semen. Journal of Molecular Evolution, 2003, 57, 261-270.	1.8	73
123	Origins, Lineage-Specific Expansions, and Multiple Losses of Tyrosine Kinases in Eukaryotes. Molecular Biology and Evolution, 2004, 21, 828-840.	8.9	73
124	Comparison of Three Methods for Estimating Rates of Synonymous and Nonsynonymous Nucleotide Substitutions. Molecular Biology and Evolution, 2004, 21, 2290-2298.	8.9	73
125	Transcriptome dynamics of developing maize leaves and genomewide prediction of <i>cis</i> elements and their cognate transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2477-86.	7.1	73
126	So, what about the molecular clock hypothesis?. Current Opinion in Genetics and Development, 1993, 3, 896-901.	3.3	72

#	Article	IF	CITATIONS
127	Evolution of the yeast protein interaction network. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12820-12824.	7.1	72
128	Prediction of splice sites with dependency graphs and their expanded bayesian networks. Bioinformatics, 2005, 21, 471-482.	4.1	72
129	Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnology for Biofuels, 2013, 6, 19.	6.2	72
130	A new measure of the robustness of biochemical networks. Bioinformatics, 2005, 21, 2698-2705.	4.1	71
131	Human SNPs Reveal No Evidence of Frequent Positive Selection. Molecular Biology and Evolution, 2005, 22, 2504-2507.	8.9	71
132	Estimation of evolutionary distances under stationary and nonstationary models of nucleotide substitution. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5899-5905.	7.1	69
133	Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3091-3099.	7.1	69
134	A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Molecular Phylogenetics and Evolution, 2002, 23, 268-275.	2.7	68
135	Gene Expression Evolves Faster in Narrowly Than in Broadly Expressed Mammalian Genes. Molecular Biology and Evolution, 2005, 22, 2113-2118.	8.9	68
136	Comparative Methods for the Analysis of Gene-Expression Evolution: An Example Using Yeast Functional Genomic Data. Molecular Biology and Evolution, 2005, 22, 40-50.	8.9	68
137	The genetic basis of evolutionary change in gene expression levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2581-2590.	4.0	68
138	Title is missing!. Genetica, 1998, 102/103, 383-391.	1.1	67
139	Isolation and expression of a Pax-6 gene in the regenerating and intact Planarian Dugesia(G)tigrina. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 558-563.	7.1	67
140	Genomic Organization, Transcriptomic Analysis, and Functional Characterization of Avian α- and β-Keratins in Diverse Feather Forms. Genome Biology and Evolution, 2014, 6, 2258-2273.	2.5	67
141	Understanding the origins of AIDS viruses. Nature, 1988, 336, 315-315.	27.8	66
142	Episodic Evolution of Growth Hormone in Primates and Emergence of the Species Specificity of Human Growth Hormone Receptor. Molecular Biology and Evolution, 2001, 18, 945-953.	8.9	66
143	A general additive distance with time-reversibility and rate variation among nucleotide sites Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4671-4676.	7.1	65
144	Apobec-1 and apolipoprotein B mRNA editing. Lipids and Lipid Metabolism, 1997, 1345, 11-26.	2.6	65

#	Article	IF	CITATIONS
145	A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnology for Biofuels, 2012, 5, 24.	6.2	65
146	Genome-Wide Patterns of Genetic Variation in Two Domestic Chickens. Genome Biology and Evolution, 2013, 5, 1376-1392.	2.5	65
147	A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types. PLoS Computational Biology, 2015, 11, e1004497.	3.2	65
148	Molecular Genetics of Spectral Tuning in New World Monkey Color Vision. Journal of Molecular Evolution, 1998, 46, 697-702.	1.8	64
149	NJML: A Hybrid Algorithm for the Neighbor-Joining and Maximum-Likelihood Methods. Molecular Biology and Evolution, 2000, 17, 1401-1409.	8.9	61
150	Experimental Evolution of Yeast for High-Temperature Tolerance. Molecular Biology and Evolution, 2018, 35, 1823-1839.	8.9	61
151	Distribution of nucleotide differences between two randomly chosen cistrons in a subdivided population: The finite island model. Theoretical Population Biology, 1976, 10, 303-308.	1.1	60
152	Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics, 2006, 7, 421.	2.6	59
153	The chimpanzee and us. Nature, 2005, 437, 50-51.	27.8	58
154	Human-specific insertions and deletions inferred from mammalian genome sequences. Genome Research, 2006, 17, 16-22.	5.5	58
155	External factors accelerate expression divergence between duplicate genes. Trends in Genetics, 2007, 23, 162-166.	6.7	58
156	The transient distribution of allele frequencies under mutation pressure. Genetical Research, 1976, 28, 205-214.	0.9	57
157	Metabolic engineering a yeast to produce astaxanthin. Bioresource Technology, 2017, 245, 899-905.	9.6	56
158	Alternatively and Constitutively Spliced Exons Are Subject to Different Evolutionary Forces. Molecular Biology and Evolution, 2006, 23, 675-682.	8.9	55
159	Overlapping genes in the human and mouse genomes. BMC Genomics, 2008, 9, 169.	2.8	55
160	Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. Process Biochemistry, 2011, 46, 489-493.	3.7	55
161	Sex Differences in Mutation Rate in Higher Primates Estimated from AMG Intron Sequences. Journal of Molecular Evolution, 1997, 44, 463-465.	1.8	53
162	Protein Under-Wrapping Causes Dosage Sensitivity and Decreases Gene Duplicability. PLoS Genetics, 2008, 4, e11.	3.5	53

#	Article	IF	CITATIONS
163	Human DNA Sequence Variation in a 6.6-kb Region Containing the Melanocortin 1 Receptor Promoter. Genetics, 2001, 158, 1253-1268.	2.9	52
164	Molecular cloning and expression of partial cDNAs and deduced amino acid sequence of a carboxyl-terminal fragment of human apolipoprotein B-100 Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 7265-7269.	7.1	51
165	Expression Divergence of Chemosensory Genes between <i>Drosophila sechellia</i> and Its Sibling Species and Its Implications for Host Shift. Genome Biology and Evolution, 2015, 7, 2843-2858.	2.5	51
166	Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresource Technology, 2015, 184, 2-8.	9.6	50
167	Large numbers of vertebrates began rapid population decline in the late 19th century. Proceedings of the United States of America, 2016, 113, 14079-14084.	7.1	50
168	Gene number expansion and contraction in vertebrate genomes with respect to invertebrate genomes. Genome Research, 2008, 18, 221-232.	5.5	49
169	Evolutionary Conservation of Histone Modifications in Mammals. Molecular Biology and Evolution, 2012, 29, 1757-1767.	8.9	49
170	The prognostic significance of RUNX2 and miR-10a/10b and their inter-relationship in breast cancer. Journal of Translational Medicine, 2014, 12, 257.	4.4	49
171	Evolution of 5' Untranslated Region Length and Gene Expression Reprogramming in Yeasts. Molecular Biology and Evolution, 2012, 29, 81-89.	8.9	48
172	Probability of identical monomorphism in related species. Genetical Research, 1975, 26, 31-43.	0.9	47
173	Allelic Variation in the Squirrel Monkey X-Linked Color Vision Gene: Biogeographical and Behavioral Correlates. Journal of Molecular Evolution, 2002, 54, 734-745.	1.8	47
174	PERSISTENCE OF COMMON ALLELES IN TWO RELATED POPULATIONS OR SPECIES. Genetics, 1977, 86, 901-914.	2.9	47
175	Features and Trend of Loss of Promoter-Associated CpG Islands in the Human and Mouse Genomes. Molecular Biology and Evolution, 2007, 24, 1991-2000.	8.9	46
176	Metabolite Profiles for <i>Antrodia cinnamomea</i> Fruiting Bodies Harvested at Different Culture Ages and from Different Wood Substrates. Journal of Agricultural and Food Chemistry, 2011, 59, 7626-7635.	5.2	46
177	Multiple Regulatory Modules Are Required for Scale-to-Feather Conversion. Molecular Biology and Evolution, 2018, 35, 417-430.	8.9	46
178	Expression evolution in yeast genes of single-input modules is mainly due to changes in <i>trans</i> -acting factors. Genome Research, 2007, 17, 1161-1169.	5.5	45
179	A model for the correlation of mutation rate with GC content and the origin of GC-rich isochores. Journal of Molecular Evolution, 1994, 38, 468-475.	1.8	44
180	Effects of GC Content and Mutational Pressure on the Lengths of Exons and Coding Sequences. Journal of Molecular Evolution, 2003, 56, 362-370.	1.8	44

WEN-HSIUNG LI

#	Article	IF	CITATIONS
181	Comment on "Chromosomal Speciation and Molecular Divergence-Accelerated Evolution in Rearranged Chromosomes". Science, 2003, 302, 988-988.	12.6	44
182	Constructing a yeast to express the largest cellulosome complex on the cell surface. Proceedings of the United States of America, 2020, 117, 2385-2394.	7.1	44
183	Estimating the intensity of male-driven evolution in rodents by using X-linked and Y-linked Ube 1 genes and pseudogenes. Journal of Molecular Evolution, 1995, 40, 70-77.	1.8	43
184	How Strong Is the Mutagenicity of Recombination in Mammals?. Molecular Biology and Evolution, 2005, 22, 426-431.	8.9	43
185	Transcriptomes of Mouse Olfactory Epithelium Reveal Sexual Differences in Odorant Detection. Genome Biology and Evolution, 2012, 4, 703-712.	2.5	43
186	Identifying gene regulatory modules of heat shock response in yeast. BMC Genomics, 2008, 9, 439.	2.8	42
187	The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. BMC Genomics, 2010, 11, 581.	2.8	42
188	Molecular evolution of ubiquitin genes. Trends in Ecology and Evolution, 1987, 2, 328-332.	8.7	41
189	Human Adaptive Evolution at Myostatin (GDF8), a Regulator of Muscle Growth. American Journal of Human Genetics, 2006, 79, 1089-1097.	6.2	41
190	PGASO: A synthetic biology tool for engineering a cellulolytic yeast. Biotechnology for Biofuels, 2012, 5, 53.	6.2	41
191	Assembler for de novo assembly of large genomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3417-24.	7.1	41
192	Structure and Evolution of Somatostatin Genes. Molecular Endocrinology, 1988, 2, 209-216.	3.7	40
193	MicroRNA 3' end nucleotide modification patterns and arm selection preference in liver tissues. BMC Systems Biology, 2012, 6, S14.	3.0	40
194	Genetic and Molecular Basis of Feather Diversity in Birds. Genome Biology and Evolution, 2018, 10, 2572-2586.	2.5	40
195	Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Scientific Reports, 2018, 8, 10850.	3.3	40
196	DNA Polymorphism in a Worldwide Sample of Human X Chromosomes. Molecular Biology and Evolution, 2002, 19, 2131-2141.	8.9	38
197	The genome and occlusion bodies of marine Penaeus monodon nudivirus (PmNV, also known as MBV) Tj ETQq1 1 terrestrial nudiviruses. BMC Genomics, 2014, 15, 628.	0.784314 2.8	4 rgBT /Over 38
198	Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics, 2015, 16, 756.	2.8	38

#	Article	IF	CITATIONS
199	Patterns of Gene Duplication in Saccharomyces cerevisiae and Caenorhabditis elegans. Journal of Molecular Evolution, 2003, 56, 28-37.	1.8	37
200	Reorganization of Adjacent Gene Relationships in Yeast Genomes by Whole-Genome Duplication and Gene Deletion. Molecular Biology and Evolution, 2006, 23, 1136-1143.	8.9	37
201	Systematic identification of yeast cell cycle transcription factors using multiple data sources. BMC Bioinformatics, 2008, 9, 522.	2.6	37
202	Potential problems in estimating the male-to-female mutation rate ratio from DNA sequence data. Journal of Molecular Evolution, 1993, 37, 160-166.	1.8	36
203	Contrasting rates of nucleotide substitution in the X-Linked and Y-Linked zinc finger genes. Journal of Molecular Evolution, 1994, 39, 569-578.	1.8	36
204	Roles of Trans and Cis Variation in Yeast Intraspecies Evolution of Gene Expression. Molecular Biology and Evolution, 2009, 26, 2533-2538.	8.9	36
205	Increasing MicroRNA target prediction confidence by the relative R2 method. Journal of Theoretical Biology, 2009, 259, 793-798.	1.7	36
206	Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics, 2007, 8, 188.	2.6	35
207	Adverse interactions between micro-RNAs and target genes from different species. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12935-12940.	7.1	35
208	Phosphorylated and Nonphosphorylated Serine and Threonine Residues Evolve at Different Rates in Mammals. Molecular Biology and Evolution, 2010, 27, 2548-2554.	8.9	35
209	MicroRNA-Like Small RNAs Prediction in the Development of Antrodia cinnamomea. PLoS ONE, 2015, 10, e0123245.	2.5	35
210	Evolution of cytochrome c genes and pseudogenes. Journal of Molecular Evolution, 1986, 23, 61-75.	1.8	34
211	A General Tendency for Conservation of Protein Length Across Eukaryotic Kingdoms. Molecular Biology and Evolution, 2004, 22, 142-147.	8.9	34
212	Codon-usage bias versus gene conversion in the evolution of yeast duplicate genes. Proceedings of the United States of America, 2006, 103, 14412-14416.	7.1	34
213	On the Robust Circuit Design Schemes of Biochemical Networks: Steady-State Approach. IEEE Transactions on Biomedical Circuits and Systems, 2007, 1, 91-104.	4.0	34
214	A Novel puf-A Gene Predicted from Evolutionary Analysis Is Involved in the Development of Eyes and Primordial Germ-Cells. PLoS ONE, 2009, 4, e4980.	2.5	34
215	Elevated auxin biosynthesis and transport underlie high vein density in C ₄ leaves. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6884-E6891.	7.1	34
216	LIKELIHOOD ANALYSIS OF MITOCHONDRIAL RESTRICTION-CLEAVAGE PATTERNS FOR THE HUMAN-CHIMPANZEE-GORILLA TRICHOTOMY. Evolution; International Journal of Organic Evolution, 1987, 41, 1162-1176.	2.3	33

#	Article	IF	CITATIONS
217	Chicken apolipoprotein A-I: cDNA sequence, tissue expression and evolution. Biochemical and Biophysical Research Communications, 1987, 148, 485-492.	2.1	33
218	[40] Statistical tests of molecular phylogenies. Methods in Enzymology, 1990, 183, 645-659.	1.0	33
219	An evolutionary approach reveals a high protein-coding capacity of the human genome. Trends in Genetics, 2003, 19, 306-310.	6.7	33
220	Gene clustering pattern, promoter architecture, and gene expression stability in eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3306-3311.	7.1	33
221	Many human RNA viruses show extraordinarily stringent selective constraints on protein evolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19009-19018.	7.1	33
222	MAINTENANCE OF GENETIC VARIABILITY UNDER THE PRESSURE OF NEUTRAL AND DELETERIOUS MUTATIONS IN A FINITE POPULATION. Genetics, 1979, 92, 647-667.	2.9	33
223	Frequent gene conversion between human red and green opsin genes. Journal of Molecular Evolution, 1998, 46, 494-496.	1.8	32
224	Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC Bioinformatics, 2005, 6, 258.	2.6	31
225	SplitPocket: identification of protein functional surfaces and characterization of their spatial patterns. Nucleic Acids Research, 2009, 37, W384-W389.	14.5	31
226	Gene Family Size Conservation Is a Good Indicator of Evolutionary Rates. Molecular Biology and Evolution, 2010, 27, 1750-1758.	8.9	31
227	Statistical Tests of DNA Phylogenies. Systematic Biology, 1995, 44, 49-63.	5.6	30
228	Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiaeidentifies mutants with improved heterologous exocellulase activity and host secretion. BMC Biotechnology, 2013, 13, 71.	3.3	30
229	Simulating allele frequencies in a population and the genetic differentiation of populations under mutation pressure. Theoretical Population Biology, 1983, 23, 19-33.	1.1	29
230	Bushbaby Growth Hormone Is Much More Similar to Nonprimate Growth Hormones than to Rhesus Monkey and Human Growth Hormones. Molecular Biology and Evolution, 2001, 18, 55-60.	8.9	29
231	Establishment of the Metabolite Profile for an Antrodia cinnamomea Health Food Product and Investigation of Its Chemoprevention Activity. Journal of Agricultural and Food Chemistry, 2013, 61, 8556-8564.	5.2	28
232	Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield. Plant Physiology, 2022, 188, 442-459.	4.8	28
233	Recombination Has Little Effect on the Rate of Sequence Divergence in Pseudoautosomal Boundary 1 Among Humans and Great Apes. Genome Research, 2003, 14, 37-43.	5.5	27
234	Method for identifying transcription factor binding sites in yeast. Bioinformatics, 2006, 22, 1675-1681.	4.1	27

#	Article	IF	CITATIONS
235	A MIXED MODEL OF MUTATION FOR ELECTROPHORETIC IDENTITY OF PROTEINS WITHIN AND BETWEEN POPULATIONS. Genetics, 1976, 83, 423-432.	2.9	27
236	Evolution of protein inhibitors of serine proteinases: Positive Darwinian selection or compositional effects?. Journal of Molecular Evolution, 1988, 28, 131-135.	1.8	26
237	Neutral mutation hypothesis test. Nature, 1991, 354, 114-115.	27.8	26
238	Nucleotide Variation and Haplotype Diversity in a 10-kb Noncoding Region in Three Continental Human Populations. Genetics, 2006, 174, 399-409.	2.9	26
239	MYBS: a comprehensive web server for mining transcription factor binding sites in yeast. Nucleic Acids Research, 2007, 35, W221-W226.	14.5	26
240	Whole genome transcriptome polymorphisms in Arabidopsis thaliana. Genome Biology, 2008, 9, R165.	9.6	26
241	Discovering gapped binding sites of yeast transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2527-2532.	7.1	26
242	The Relationships Among MicroRNA Regulation, Intrinsically Disordered Regions, and Other Indicators of Protein Evolutionary Rate. Molecular Biology and Evolution, 2011, 28, 2513-2520.	8.9	26
243	Classification of protein functional surfaces using structural characteristics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1170-1175.	7.1	26
244	Functional compensation by duplicated genes in mouse. Trends in Genetics, 2009, 25, 441-442.	6.7	25
245	Transcriptional profiling of adult Drosophila antennae by high-throughput sequencing. Zoological Studies, 2013, 52, .	0.3	25
246	Substitution rates in hepatitis delta virus. Journal of Molecular Evolution, 1995, 41, 721-6.	1.8	24
247	Higher Gene Duplicabilities for Metabolic Proteins Than for Nonmetabolic Proteins in Yeast and E. coli. Journal of Molecular Evolution, 2004, 59, 806-814.	1.8	24
248	Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21747-21756.	7.1	24
249	Electrophoretic identity of proteins in a finite population and genetic distance between taxa. Genetical Research, 1976, 28, 119-127.	0.9	23
250	The cDNA and protein sequences of mouse lactate dehydrogenase B. Molecular evolution of vertebrate lactate dehydrogenase genes A (muscle), B (heart) and C (testis). FEBS Journal, 1990, 189, 215-220.	0.2	23
251	Radical amino acid change versus positive selection in the evolution of viral envelope proteins. Gene, 2006, 385, 83-88.	2.2	23
252	Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast. Applied Energy, 2012, 100, 27-32.	10.1	23

#	Article	IF	CITATIONS
253	Genome-wide prediction of CRISPR/Cas9 targets in Kluyveromyces marxianus and its application to obtain a stable haploid strain. Scientific Reports, 2018, 8, 7305.	3.3	23
254	EVOLUTIONARY CHANGE OF RESTRICTION CLEAVAGE SITES AND PHYLOGENETIC INFERENCE. Genetics, 1986, 113, 187-213.	2.9	23
255	NJML+: An Extension of the NJML Method to Handle Protein Sequence Data and Computer Software Implementation. Molecular Biology and Evolution, 2001, 18, 1983-1992.	8.9	22
256	Are GC-rich isochores vanishing in mammals?. Gene, 2006, 385, 50-56.	2.2	22
257	Sulfate Activation Enzymes: Phylogeny and Association with Pyrophosphatase. Journal of Molecular Evolution, 2009, 68, 1-13.	1.8	22
258	f POP: footprinting functional pockets of proteins by comparative spatial patterns. Nucleic Acids Research, 2010, 38, D288-D295.	14.5	22
259	Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens. PLoS Genetics, 2020, 16, e1008831.	3.5	22
260	Identifying Primate ACE2 Variants That Confer Resistance to SARS-CoV-2. Molecular Biology and Evolution, 2021, 38, 2715-2731.	8.9	22
261	Detection of gene duplications and block duplications in eukaryotic genomes. Journal of Structural and Functional Genomics, 2003, 3, 27-34.	1.2	21
262	Identification of protein functional surfaces by the concept of a split pocket. Proteins: Structure, Function and Bioinformatics, 2009, 76, 959-976.	2.6	21
263	Functional Evolution of Cardiac MicroRNAs in Heart Development and Functions. Molecular Biology and Evolution, 2014, 31, 2722-2734.	8.9	21
264	Cloning and sequencing of bovine apolipoprotein E complementary DNA and molecular evolution of apolipoproteins E, C-I, and C-II. Journal of Molecular Evolution, 1991, 32, 469-475.	1.8	20
265	Genetically distinct coelacanth population off the northern Tanzanian coast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18009-18013.	7.1	20
266	Uncovering MicroRNA Regulatory Hubs that Modulate Plasma Cell Differentiation. Scientific Reports, 2015, 5, 17957.	3.3	20
267	Rice transcription factor GAMYB modulates <i>bHLH142</i> and is homeostatically regulated by TDR during anther tapetal and pollen development. Journal of Experimental Botany, 2021, 72, 4888-4903.	4.8	20
268	Frequency spectra of neutral and deleterious alleles in a finite population. Journal of Mathematical Biology, 1980, 10, 155-166.	1.9	19
269	Detecting positive selection in the budding yeast genome. Journal of Evolutionary Biology, 2009, 22, 2430-2437.	1.7	19
270	Integrating RNA-seq and ChIP-seq data to characterize long non-coding RNAs in Drosophila melanogaster. BMC Genomics, 2016, 17, 220.	2.8	19

#	Article	IF	CITATIONS
271	Maize and millet transcription factors annotated using comparative genomic and transcriptomic data. BMC Genomics, 2014, 15, 818.	2.8	18
272	A thermo- and toxin-tolerant kefir yeast for biorefinery and biofuel production. Applied Energy, 2014, 132, 465-474.	10.1	18
273	Dynamic association rules for gene expression data analysis. BMC Genomics, 2015, 16, 786.	2.8	18
274	ETOPE: evolutionary test of predicted exons. Nucleic Acids Research, 2003, 31, 3564-3567.	14.5	17
275	Construction of linear invariants in phylogenetic inference. Mathematical Biosciences, 1992, 109, 201-228.	1.9	16
276	Roles of cis- and trans-Changes in the Regulatory Evolution of Genes in the Gluconeogenic Pathway in Yeast. Molecular Biology and Evolution, 2008, 25, 1863-1875.	8.9	16
277	Insulin-like Growth Factor II Intron Sequences Support the Hominoid Rate-Slowdown Hypothesis. Molecular Phylogenetics and Evolution, 1993, 2, 315-321.	2.7	15
278	Molecular Evolution of Recombination Hotspots and Highly Recombining Pseudoautosomal Regions in Hominoids. Molecular Biology and Evolution, 2005, 22, 1223-1230.	8.9	15
279	Protein complexity, gene duplicability and gene dispensability in the yeast genome. Gene, 2007, 387, 109-117.	2.2	15
280	Prediction of human miRNAs using tissue-selective motifs in 3′ UTRs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17061-17066.	7.1	15
281	Fast Evolution of Core Promoters in Primate Genomes. Molecular Biology and Evolution, 2008, 25, 1239-1244.	8.9	15
282	Angiosperm origins. Nature, 1989, 342, 131-132.	27.8	14
283	Unexpected Conservation of the X-Linked Color Vision Gene in Nocturnal Prosimians: Evidence from Two Bush Babies. Journal of Molecular Evolution, 1997, 45, 610-618.	1.8	14
284	A systematic approach to detecting transcription factors in response to environmental stresses. BMC Bioinformatics, 2007, 8, 473.	2.6	14
285	Parallel Evolution between Aromatase and Androgen Receptor in the Animal Kingdom. Molecular Biology and Evolution, 2009, 26, 123-129.	8.9	14
286	Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts. Genome Biology and Evolution, 2013, 5, 1065-1078.	2.5	14
287	Regulatory Differences in Natal Down Development between Altricial Zebra Finch and Precocial Chicken. Molecular Biology and Evolution, 2016, 33, 2030-2043.	8.9	14
288	Molecular evolution of growth hormone and receptor in the guinea-pig, a mammal unresponsive to growth hormone. Gene, 2000, 246, 357-363.	2.2	13

#	Article	IF	CITATIONS
289	Identification and evolutionary analysis of long non-coding RNAs in zebra finch. BMC Genomics, 2017, 18, 117.	2.8	13
290	Constructing a cellulosic yeast host with an efficient cellulase cocktail. Biotechnology and Bioengineering, 2018, 115, 751-761.	3.3	13
291	Sequences and Evolution of Human and Squirrel Monkey Blue Opsin Genes. Journal of Molecular Evolution, 1997, 44, 378-382.	1.8	12
292	On the Adaptive Design Rules of Biochemical Networks in Evolution. Evolutionary Bioinformatics, 2007, 3, 117693430700300.	1.2	12
293	Insights into the regulation of C4 leaf development from comparative transcriptomic analysis. Current Opinion in Plant Biology, 2016, 30, 1-10.	7.1	12
294	Detection of gene duplications and block duplications in eukaryotic genomes. Journal of Structural and Functional Genomics, 2003, 3, 27-34.	1.2	12
295	Evolutionary approach to predicting the binding site residues of a protein from its primary sequence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5313-5318.	7.1	11
296	The Evolution of Aerobic Fermentation in Schizosaccharomyces pombe Was Associated with Regulatory Reprogramming but not Nucleosome Reorganization. Molecular Biology and Evolution, 2011, 28, 1407-1413.	8.9	11
297	Regulatory Divergence among Beta-Keratin Genes during Bird Evolution. Molecular Biology and Evolution, 2016, 33, 2769-2780.	8.9	11
298	Chromosomal-level genome assembly of the semi-dwarf rice Taichung Native 1, an initiator of Green Revolution. Genomics, 2021, 113, 2656-2674.	2.9	11
299	A simulation study on Nei and Li's model for estimating DNA divergence from restriction enzyme maps. Journal of Molecular Evolution, 1981, 17, 251-255.	1.8	10
300	Different age distribution patterns of human, nematode, and Arabidopsis duplicate genes. Gene, 2004, 342, 263-268.	2.2	10
301	Patterns of internal gene duplication in the course of metazoan evolution. Gene, 2007, 396, 59-65.	2.2	10
302	Assembling the Setaria italica L. Beauv. genome into nine chromosomes and insights into regions affecting growth and drought tolerance. Scientific Reports, 2016, 6, 35076.	3.3	10
303	Necessary and sufficient conditions for the existence of certain quadratic invariants under a phylogenetic tree. Mathematical Biosciences, 1991, 105, 229-238.	1.9	9
304	GS-Aligner: A Novel Tool for Aligning Genomic Sequences Using Bit-Level Operations. Molecular Biology and Evolution, 2003, 20, 1299-1309.	8.9	9
305	Developmental constraint on gene duplicability in fruit flies and nematodes. Gene, 2004, 340, 237-240.	2.2	9
306	Polymorphism and evolution of the Rh blood groups. Japanese Journal of Human Genetics, 1981, 26, 263-278.	0.8	8

#	Article	IF	CITATIONS
307	Necessary and sufficient conditions for the existence of linear invariants in phylogenetic inference. Mathematical Biosciences, 1992, 108, 203-218.	1.9	7
308	The Influence of Adjacent Nucleotides on the Pattern of Nucleotide Substitution in Mitochondrial Introns of Angiosperms. Journal of Molecular Evolution, 2002, 55, 111-115.	1.8	7
309	Improved variance estimators for one- and two-parameter models of nucleotide substitution. Journal of Theoretical Biology, 2008, 254, 164-167.	1.7	7
310	Primary structure of Beijing duck apolipoprotein A-1. The Protein Journal, 1993, 12, 585-591.	1.1	6
311	Statistical models for studying DNA sequence evolution. Physica A: Statistical Mechanics and Its Applications, 1995, 221, 159-167.	2.6	6
312	A simple method using Pyrosequencing TM to identify de novo SNPs in pooled DNA samples. Nucleic Acids Research, 2011, 39, e28-e28.	14.5	6
313	Second-generation bioethanol production from phytomass after phytoremediation using recombinant bacteria-yeast co-culture. Fuel, 2022, 326, 124975.	6.4	6
314	Revealing the Anti-Tumor Effect of Artificial miRNA p-27-5p on Human Breast Carcinoma Cell Line T-47D. International Journal of Molecular Sciences, 2012, 13, 6352-6369.	4.1	5
315	Predicting the probability of H3K4me3 occupation at a base pair from the genome sequence context. Bioinformatics, 2013, 29, 1199-1205.	4.1	5
316	Gains and Losses of Transcription Factor Binding Sites inSaccharomyces cerevisiaeandSaccharomyces paradoxus. Genome Biology and Evolution, 2015, 7, 2245-2257.	2.5	5
317	Characterizing an engineered carotenoid-producing yeast as an anti-stress chassis for building cell factories. Microbial Cell Factories, 2019, 18, 155.	4.0	5
318	Constructing a human complex type N-linked glycosylation pathway in Kluyveromyces marxianus. PLoS ONE, 2020, 15, e0233492.	2.5	5
319	On the adaptive design rules of biochemical networks in evolution. Evolutionary Bioinformatics, 2007, 3, 27-39.	1.2	5
320	Total number of individuals affected by deleterious mutant genes in a finite population. Annals of Human Genetics, 1975, 38, 333-340.	0.8	4
321	Statistical Tests of DNA Phylogenies. Systematic Biology, 1995, 44, 49.	5.6	4
322	PSC: protein surface classification. Nucleic Acids Research, 2012, 40, W435-W439.	14.5	4
323	Effect of changes in population size on the correlation between mutation rate and heterozygosity. Journal of Molecular Evolution, 1979, 12, 319-329.	1.8	3
324	Positive selection causes purifying selection (reply). Nature, 1982, 295, 630-630.	27.8	3

#	Article	IF	CITATIONS
325	Archaebacterial or eocyte tree?. Nature, 1990, 343, 419-419.	27.8	3
326	A Rapid Heuristic Algorithm for Finding Minimum Evolution Trees. Molecular Phylogenetics and Evolution, 2000, 16, 173-179.	2.7	3
327	Historical profiling of maize duplicate genes sheds light on the evolution of C4 photosynthesis in grasses. Molecular Phylogenetics and Evolution, 2013, 66, 453-462.	2.7	3
328	Predicting Transcription Factor Binding Sites and Their Cognate Transcription Factors Using Gene Expression Data. Methods in Molecular Biology, 2017, 1629, 271-282.	0.9	3
329	Feather Evolution from Precocial to Altricial Birds. Zoological Studies, 2019, 58, e24.	0.3	3
330	Growth of deleterious mutant genes in a large population. Annals of Human Genetics, 1976, 39, 441-445.	0.8	2
331	Evolutionary change of restriction sites under unequal rates of nucleotide substitution among the three positions of codons. Journal of Molecular Evolution, 1986, 23, 205-210.	1.8	2
332	Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation. Gene Regulation and Systems Biology, 2008, 2, GRSB.S558.	2.3	2
333	Parallel Evolution between Aromatase and Androgen Receptor in the Animal Kingdom. Molecular Biology and Evolution, 2009, 26, 1191-1191.	8.9	1
334	Detection of gene duplications and block duplications in eukaryotic genomes. , 2003, , 27-34.		1
335	Genome Assembly and Evolutionary Analysis of the Mandarin Duck <i>Aix galericulata</i> Reveal Strong Genome Conservation among Ducks. Genome Biology and Evolution, 2022, 14, .	2.5	1
336	A note on the arrival probability, first arrival time and age of a mutant gene in a finite population. Annals of Human Genetics, 1976, 39, 435-439.	0.8	0
337	Variance of genetic distance and correlation of heterozygosity between populations under the pressure of stepwise mutation. Theoretical Population Biology, 1979, 15, 171-190.	1.1	0
338	ãfẽf³ãfʿãf³ã,,ãf¼ã⊷ã,ẽ,Œã,ẽ,Œ. Nature Digest, 2005, 2, 19-22.	0.0	0
339	Patterns of Gene Deletion following Genome Duplication in Yeast. , 0, , .		0
340	Mathematical properties of some measures of evolutionary distance. Journal of Theoretical Biology, 2007, 245, 790-792.	1.7	0
341	Genomic signatures for the origin, adaptation and diversification of mangroves. National Science Review, 2017, 4, 735-736.	9.5	0
342	ON THE INFERENCE OF REGULATORY ELEMENTS, CIRCUITS AND MODULES. , 2005, , .		0

#	Article	IF	CITATIONS
343	Contribution of Transcription Factor Binding Site Motif Variants to Condition-Specific Gene Expression Patterns in Budding Yeast. PLoS ONE, 2012, 7, e32274.	2.5	0
344	Comparative Genomics and Evolutionary Genetics of Yeast Carbon Metabolism. , 2014, , 97-120.		0
345	ESTIMATION OF THE NUMBERS OF SYNONYMOUS AND NONSYNONYMOUS SUBSTITUTIONS BETWEEN PROTEIN CODING GENES11This work was supported by NIH grant GM30998 , 1986, , 295-314.		0
346	Structure and Evolution of the Apolipoprotein and Lipase Gene Families. The Argenteuil Symposia, 1992, , 93-107.	0.1	0
347	Identifying mutations in sd1, Pi54 and Pi-ta, and positively selected genes of TN1, the first semidwarf rice in Green Revolution. , 2022, 63, 9.		0
348	Title is missing!. , 2020, 16, e1008831.		0
349	Title is missing!. , 2020, 16, e1008831.		0
350	Title is missing!. , 2020, 16, e1008831.		0
351	Title is missing!. , 2020, 16, e1008831.		0
352	Title is missing!. , 2020, 16, e1008831.		0
353	Title is missing!. , 2020, 16, e1008831.		Ο