
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7701081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maladaptive Pulmonary Vascular Responses to Chronic Sustained and Chronic Intermittent Hypoxia in Rat. Antioxidants, 2022, 11, 54.	5.1	5
2	Oxygen Sensing: Physiology and Pathophysiology. Antioxidants, 2022, 11, 1018.	5.1	1
3	Redox Regulation, Oxidative Stress, and Inflammation in Group 3 Pulmonary Hypertension. Advances in Experimental Medicine and Biology, 2021, 1303, 209-241.	1.6	7
4	Pulmonary hypertension associated with chronic hypoxia: just ASICâ€ness?. Journal of Physiology, 2021, 599, 4731-4732.	2.9	2
5	K _V 1.5 channel downâ€regulation in pulmonary hypertension is nothing short of MiRâ€lâ€aculous!. Journal of Physiology, 2019, 597, 989-990.	2.9	1
6	Hydroxycobalamin Reveals the Involvement of Hydrogen Sulfide in the Hypoxic Responses of Rat Carotid Body Chemoreceptor Cells. Antioxidants, 2019, 8, 62.	5.1	4
7	Role of reactive oxygen species and sulfide-quinone oxoreductase in hydrogen sulfide-induced contraction of rat pulmonary arteries. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L670-L685.	2.9	10
8	Actin polymerization contributes to ROS- and Rho-dependent Ca ²⁺ sensitization in pulmonary arteries from chronic hypoxic rats. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H314-H317.	3.2	0
9	Hydrogen Sulfide as an O2 Sensor: A Critical Analysis. Advances in Experimental Medicine and Biology, 2017, 967, 261-276.	1.6	5
10	Reactive oxygen species facilitate the EDH response in arterioles by potentiating intracellular endothelial Ca 2+ release. Free Radical Biology and Medicine, 2016, 97, 274-284.	2.9	21
11	Glabridin-induced vasorelaxation: Evidence for a role of BKCa channels and cyclic GMP. Life Sciences, 2016, 165, 26-34.	4.3	35
12	Role of Hydrogen Sulfide in Systemic and Pulmonary Hypertension: Cellular Mechanisms and Therapeutic Implications. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2016, 14, 4-22.	1.0	10
13	Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species. Cardiovascular Research, 2015, 106, 121-130.	3.8	16
14	Hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries is not inhibited by antagonists of H ₂ Sâ€synthesizing pathways. Journal of Physiology, 2015, 593, 385-401.	2.9	17
15	Potentiation of Hypoxic Pulmonary Vasoconstriction by Hydrogen Sulfide Precursors 3-Mercaptopyruvate and D-Cysteine Is Blocked by the Cystathionine γ Lyase Inhibitor Propargylglycine. Advances in Experimental Medicine and Biology, 2015, 860, 81-87.	1.6	10
16	Investigating the potential role of <scp>TRPA</scp> 1 in locomotion and cardiovascular control during hypertension. Pharmacology Research and Perspectives, 2014, 2, e00052.	2.4	33
17	Intracellular remodelling of Ca2+ stores in pulmonary hypertension. Cardiovascular Research, 2014, 103, 189-191.	3.8	2
18	Gap junctions support the sustained phase of hypoxic pulmonary vasoconstriction by facilitating calcium sensitization. Cardiovascular Research, 2013, 99, 404-411.	3.8	17

#	Article	IF	CITATIONS
19	Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca ²⁺ release. Journal of Physiology, 2013, 591, 4473-4498.	2.9	36
20	Does TRPC3 macrodominate the myoendothelial gap junction microdomain?. Cardiovascular Research, 2012, 95, 399-400.	3.8	4
21	Hypoxic Pulmonary Vasoconstriction. Physiological Reviews, 2012, 92, 367-520.	28.8	568
22	Mechanism of hydrogen sulfide mediated contraction in rat small pulmonary arteries. FASEB Journal, 2012, 26, 871.5.	0.5	2
23	Subâ€contractile sphingosylphosphorylcholine enhances vasoreactivity via reactive oxygen species. FASEB Journal, 2012, 26, 863.9.	0.5	0
24	O2 sensing and Ca2+ release in hypoxic pulmonary vasoconstriction in nonâ€preconstricted pulmonary arteries from rats. FASEB Journal, 2012, 26, 871.6.	0.5	1
25	S-Nitrosophytochelatins: Investigation of the Bioactivity of an Oligopeptide Nitric Oxide Delivery System. Biomacromolecules, 2011, 12, 2103-2113.	5.4	14
26	Key role of the RhoA/Rho kinase system in pulmonary hypertension. Pulmonary Pharmacology and Therapeutics, 2011, 24, 1-14.	2.6	57
27	Superoxide differentially controls pulmonary and systemic vascular tone through multiple signalling pathways. Cardiovascular Research, 2011, 89, 214-224.	3.8	28
28	Cell redox state and hypoxic pulmonary vasoconstriction: Recent evidence and possible mechanisms. Respiratory Physiology and Neurobiology, 2010, 174, 165-174.	1.6	20
29	Ca2+ homeostasis and structural and functional remodelling of airway smooth muscle in asthma. Thorax, 2010, 65, 547-552.	5.6	83
30	Role of Epithelial Sodium Channels in the Renal Myogenic Response?. Hypertension, 2010, 55, e6.	2.7	6
31	Srcâ€family kinases mediate activation of RhoA and constriction in rat pulmonary artery. FASEB Journal, 2010, 24, 1061.9.	0.5	2
32	Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization. Free Radical Biology and Medicine, 2009, 46, 633-642.	2.9	95
33	Constriction of pulmonary artery by peroxide: role of Ca2+ release and PKC. Free Radical Biology and Medicine, 2008, 45, 1468-1476.	2.9	54
34	Low Concentrations of Sphingosylphosphorylcholine Enhance Pulmonary Artery Vasoreactivity. Hypertension, 2008, 51, 239-245.	2.7	16
35	Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery. Cardiovascular Research, 2008, 80, 453-462.	3.8	56
36	Effects of amiloride, benzamil, and alterations in extracellular Na+ on the rat afferent arteriole and its myogenic response. American Journal of Physiology - Renal Physiology, 2008, 295, F272-F282.	2.7	38

#	Article	IF	CITATIONS
37	Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery. Cardiovascular Research, 2008, 77, 570-579.	3.8	47
38	Hypoxic pulmonary vasoconstriction in intact rat intrapulmonary arteries is not initiated by inhibition of Na ⁺ -Ca ²⁺ exchange. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L982-L990.	2.9	9
39	Effect of ceramide on the contractility of pregnant rat uterus. European Journal of Pharmacology, 2007, 567, 159-165.	3.5	1
40	The Isoflavone Equol Mediates Rapid Vascular Relaxation. Journal of Biological Chemistry, 2006, 281, 27335-27345.	3.4	126
41	Hypoxic pulmonary vasoconstriction is/is not mediated by increased production of reactive oxygen species. Journal of Applied Physiology, 2006, 101, 1000-1002.	2.5	6
42	A role for voltageâ€gated, but not Ca ²⁺ â€activated, K ⁺ channels in regulating spontaneous contractile activity in myometrium from virgin and pregnant rats. British Journal of Pharmacology, 2006, 147, 815-824.	5.4	56
43	Hypoxic pulmonary vasoconstriction: mechanisms and controversies. Journal of Physiology, 2006, 570, 53-58.	2.9	132
44	Mechanisms of the prostaglandin F2α-induced rise in [Ca2+]iin rat intrapulmonary arteries. Journal of Physiology, 2006, 571, 147-163.	2.9	38
45	Dietary soy modulates endothelium-dependent relaxation in aged male rats: Increased agonist-induced endothelium-derived hyperpolarising factor and basal nitric oxide activity. Free Radical Biology and Medicine, 2006, 41, 731-739.	2.9	14
46	TRPC Channel Upregulation in Chronically Hypoxic Pulmonary Arteries. Circulation Research, 2006, 98, 1465-1467.	4.5	10
47	Low concentrations of reactive oxygen species cause vasoconstriction of small distal pulmonary arteries FASEB Journal, 2006, 20, A1229.	0.5	1
48	Role of capacitative Ca2+ entry but not Na+/Ca2+ exchange in hypoxic pulmonary vasoconstriction in rat intrapulmonary arteries. Novartis Foundation Symposium, 2006, 272, 259-68; discussion 268-79.	1.1	8
49	Euhydric hypercapnia increases vasoreactivity of rat pulmonary arteries via HCO transport and depolarisation. Cardiovascular Research, 2005, 65, 505-512.	3.8	13
50	Sphingosylphosphorylcholine-induced vasoconstriction of pulmonary artery: Activation of non-store-operated Ca entry. Cardiovascular Research, 2005, 68, 56-64.	3.8	33
51	Capacitative calcium entry: a central role in hypoxic pulmonary vasoconstriction?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L2-L4.	2.9	24
52	Modulation of PGF2α- and hypoxia-induced contraction of rat intrapulmonary artery by p38 MAPK inhibition: a nitric oxide-dependent mechanism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L1039-L1048.	2.9	10
53	Dietary soy isoflavoneâ€induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. FASEB Journal, 2005, 19, 1755-1757.	0.5	169

54 Endothelium-dependent Hypoxic Pulmonary Vasoconstriction. , 2004, , 217-230.

0

#	Article	IF	CITATIONS
55	Protein kinases in vascular smooth muscle tone—role in the pulmonary vasculature and hypoxic pulmonary vasoconstriction. , 2004, 104, 207-231.		71
56	Calcium, mitochondria and oxygen sensing in the pulmonary circulation. Cell Calcium, 2004, 36, 209-220.	2.4	45
57	Capacitative calcium entry as a pulmonary specific vasoconstrictor mechanism in small muscular arteries of the rat. British Journal of Pharmacology, 2003, 140, 97-106.	5.4	74
58	Ca2+ sensitization during sustained hypoxic pulmonary vasoconstriction is endothelium dependent. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L1121-L1126.	2.9	51
59	Electrophysiologically distinct smooth muscle cell subtypes in rat conduit and resistance pulmonary arteries. Journal of Physiology, 2002, 538, 867-878.	2.9	61
60	Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respiratory Physiology and Neurobiology, 2002, 132, 107-120.	1.6	107
61	Propionateâ€induced relaxation in rat mesenteric arteries: a role for endotheliumâ€derived hyperpolarising factor. Journal of Physiology, 2002, 538, 879-890.	2.9	24
62	Modulation of Potassium Current Characteristics in Human Myometrial Smooth Muscle by 17β-Estradiol and Progesterone1. Biology of Reproduction, 2001, 64, 1526-1534.	2.7	41
63	Voltageâ€independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. Journal of Physiology, 2000, 525, 669-680.	2.9	157
64	Mechanism of effect of extracellular pH on L-type Ca ²⁺ channel currents in human mesenteric arterial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H76-H85.	3.2	19
65	Voltage-gated K+currents in freshly isolated myocytes of the pregnant human myometrium. Journal of Physiology, 1999, 518, 769-781.	2.9	41
66	Calcium antagonistic properties of the cyclooxygenase-2 inhibitor nimesulide in human myometrial myocytes. British Journal of Pharmacology, 1999, 127, 1470-1478.	5.4	15
67	Differential effects of insulin-sensitizers troglitazone and rosiglitazone on ion currents in rat vascular myocytes. European Journal of Pharmacology, 1999, 368, 103-109.	3.5	49
68	Differential block by troglitazone and rosiglitazone of glibenclamide-sensitive K+ current in rat aorta myocytes. European Journal of Pharmacology, 1999, 386, 121-125.	3.5	16
69	Mechanisms of hypoxic pulmonary vasoconstriction: can anyone be right?. Respiration Physiology, 1999, 115, 261-271.	2.7	111
70	Effects of the 5-lipoxygenase activating protein inhibitor MK886 on voltage-gated and Ca2+ -activated K+ currents in rat arterial myocytes. British Journal of Pharmacology, 1998, 124, 572-578.	5.4	12
71	Effect of nimesulide and indomethacin on contractility and the Ca2+ channel current in myometrial smooth muscle from pregnant women. British Journal of Pharmacology, 1998, 125, 1212-1217.	5.4	53
72	pH-dependent block of the L-type Ca2+ channel current by diltiazem in human mesenteric arterial myocytes. European Journal of Pharmacology, 1998, 360, 81-90.	3.5	8

#	Article	IF	CITATIONS
73	Modulation of Arachidonic Acid Release and Membrane Fluidity by Albumin in Vascular Smooth Muscle and Endothelial Cells. Circulation Research, 1998, 83, 923-931.	4.5	60
74	Modulatory Effects of Arachidonic Acid on the Delayed Rectifier K + Current in Rat Pulmonary Arterial Myocytes. Circulation Research, 1996, 79, 20-31.	4.5	42
75	Membrane ion channels in vascular smooth muscle excitation-contraction coupling. , 1996, , 136-159.		0
76	The pharmacological properties of K ⁺ currents from rabbit isolated aortic smooth muscle cells. British Journal of Pharmacology, 1995, 116, 3139-3148.	5.4	28
77	Inhibition of Vascular Smooth Muscle Cell K ⁺ Currents by Tyrosine Kinase Inhibitors Genistein and ST 638. Circulation Research, 1995, 76, 310-316.	4.5	56
78	Intracellular Ca2+ release in cerebral arteries. , 1994, 64, 493-507.		5
79	Effects of BRL 38227 on potassium currents in smooth muscle cells isolated from rabbit portal vein and human mesenteric artery. British Journal of Pharmacology, 1992, 105, 549-556.	5.4	33
80	Cromakalim does not act as a calcium antagonist in isolated human mesenteric artery cells. European Journal of Pharmacology, 1992, 217, 105-108.	3.5	0
81	The mechanism of action of peppermint oil on gastrointestinal smooth muscle. Gastroenterology, 1991, 101, 55-65.	1.3	247
82	Estimation of high K- and noradrenaline-induced45Ca uptakes in isolated rat aorta: effects of washing in icecold solutions. Pflugers Archiv European Journal of Physiology, 1989, 414, 579-583.	2.8	5
83	Role of Capacitative Ca2+ Entry But Not Na+ /Ca2+ Exchange in Hypoxic Pulmonary Vasoconstriction in Rat Intrapulmonary Arteries. Novartis Foundation Symposium, 0, , 259-273.	1.1	8