
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7699853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. Journal of Neuroscience, 2020, 40, 1232-1247.	3.6	30
2	Defect patterns on the curved surface of fish retinae suggest a mechanism of cone mosaic formation. PLoS Computational Biology, 2020, 16, e1008437.	3.2	4
3	Novel Animal Model of Crumbs-Dependent Progressive Retinal Degeneration That Targets Specific Cone Subtypes. , 2018, 59, 505.		10
4	Anisotropic MÃ1⁄4ller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish retina. Neural Development, 2017, 12, 20.	2.4	29
5	Rapid, Dynamic Activation of Müller Glial Stem Cell Responses in Zebrafish. , 2016, 57, 5148.		74
6	Regeneration: New Neurons Wire Up. Current Biology, 2016, 26, R794-R796.	3.9	2
7	Transmission from the dominant input shapes the stereotypic ratio of photoreceptor inputs onto horizontal cells. Nature Communications, 2014, 5, 3699.	12.8	33
8	Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Progress in Retinal and Eye Research, 2014, 40, 94-123.	15.5	273
9	Patterning the Cone Mosaic Array in Zebrafish Retina Requires Specification of Ultraviolet-Sensitive Cones. PLoS ONE, 2014, 9, e85325.	2.5	43
10	Retinal regeneration in adult zebrafish requires regulation of TGFÎ ² signaling. Glia, 2013, 61, 1687-1697.	4.9	101
11	A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development (Cambridge), 2013, 140, 4510-4521.	2.5	176
12	β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Development, 2012, 7, 30.	2.4	131
13	Coupling Mechanical Deformations and Planar Cell Polarity to Create Regular Patterns in the Zebrafish Retina. PLoS Computational Biology, 2012, 8, e1002618.	3.2	86
14	FGF signaling regulates rod photoreceptor cell maintenance and regeneration in zebrafish. Experimental Eye Research, 2011, 93, 726-734.	2.6	65
15	Ontogeny of cone photoreceptor mosaics in zebrafish. Journal of Comparative Neurology, 2010, 518, 4182-4195.	1.6	131
16	Midkine expression is regulated by the circadian clock in the retina of the zebrafish. Visual Neuroscience, 2009, 26, 495-501.	1.0	11
17	Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9310-9315.	7.1	141
18	Have we achieved a unified model of photoreceptor cell fate specification in vertebrates?. Brain Research, 2008, 1192, 134-150.	2.2	39

#	Article	IF	CITATIONS
19	Ruben Adler, M.D. (1940–2007). Brain Research, 2008, 1192, 3-4.	2.2	Ο
20	<i>pak2a</i> mutations cause cerebral hemorrhage in <i>redhead</i> zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13996-14001.	7.1	89
21	Late-Stage Neuronal Progenitors in the Retina Are Radial Muller Glia That Function as Retinal Stem Cells. Journal of Neuroscience, 2007, 27, 7028-7040.	3.6	580
22	GFAP transgenic zebrafish. Gene Expression Patterns, 2006, 6, 1007-1013.	0.8	322
23	Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Developmental Biology, 2006, 6, 36.	2.1	435
24	Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nature Genetics, 2005, 37, 282-288.	21.4	367
25	Genetic dissection of the zebrafish retinal stem-cell compartment. Developmental Biology, 2005, 281, 53-65.	2.0	71
26	A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. International Journal of Developmental Biology, 2004, 48, 935-945.	0.6	77
27	The Teleost Retina as a Model for Developmental and Regeneration Biology. Zebrafish, 2004, 1, 257-271.	1.1	90
28	Zebrafish cone-rod (crx) homeobox gene promotes retinogenesis. Developmental Biology, 2004, 269, 237-251.	2.0	116
29	Restoration of Vision. , 2004, , 703-709.		1
30	Embryonic origin of the eyes in teleost fish. BioEssays, 2002, 24, 519-529.	2.5	40
31	Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nature Genetics, 2002, 30, 117-121.	21.4	150
32	Zebrafish Genes rx1 and rx2 Help Define the Region of Forebrain That Gives Rise to Retina. Developmental Biology, 2001, 231, 13-30.	2.0	92
33	Zebrafish E-cadherin: Expression during early embryogenesis and regulation during brain development. Developmental Dynamics, 2001, 221, 231-237.	1.8	46
34	Cadherin-4 expression in the zebrafish central nervous system and regulation by ventral midline signaling. Developmental Brain Research, 2001, 131, 17-29.	1.7	27
35	Function for Hedgehog Genes in Zebrafish Retinal Development. Developmental Biology, 2000, 220, 238-252.	2.0	149
36	[39] In situ hybridization studies of retinal neurons. Methods in Enzymology, 2000, 316, 579-590.	1.0	59

#	Article	IF	CITATIONS
37	How the Neural Retina Regenerates. Results and Problems in Cell Differentiation, 2000, 31, 197-218.	0.7	68
38	Expression of three Rx homeobox genes in embryonic and adult zebrafish. Mechanisms of Development, 1999, 84, 195-198.	1.7	131
39	Vsx-2, a gene encoding a paired-type homeodomain, is expressed in the retina, hindbrain, and spinal cord during goldfish embryogenesis. Developmental Brain Research, 1998, 109, 129-135.	1.7	18
40	Cloning of zebrafishvsx1: Expression of apaired-like homeobox gene during CNS development. Genesis, 1998, 23, 128-141.	2.1	42
41	Spatiotemporal coordination of rod and cone photoreceptor differentiation in goldfish retina. , 1997, 382, 272-284.		73
42	Vsx-1 andVsx-2: Differential expression of twoPaired-like homeobox genes during zebrafish and goldfish retinogenesis. Journal of Comparative Neurology, 1997, 388, 495-505.	1.6	97
43	A goldfishNotch-3 homologue is expressed in neurogenic regions of embryonic, adult, and regenerating brain and retina. , 1997, 20, 208-223.		53
44	Vsx-1 and Vsx-2: Differential expression of two Paired-like homeobox genes during zebrafish and goldfish retinogenesis. , 1997, 388, 495.		1
45	Molecular Cloning and characterization of the putative ultraviolet-sensitive visual pigment of goldfish. Vision Research, 1996, 36, 933-939.	1.4	78
46	Retinal pigmented epithelium does not transdifferentiate in adult goldfish. Journal of Neurobiology, 1995, 27, 447-456.	3.6	30
47	Developmental patterning of rod and cone photoreceptors in embryonic zebrafish. Journal of Comparative Neurology, 1995, 359, 537-550.	1.6	288
48	Development and morphological organization of photoreceptors. , 1995, , 1-23.		9
49	Subcellular localization of α-tubulin and opsin mRNA in the goldfish retina using digoxigenin-labeled cRNA probes detected by alkaline phosphatase and HRP histochemistry. Journal of Neuroscience Methods, 1993, 50, 145-152.	2.5	72
50	Expression of rod and cone visual pigments in goldfish and zebrafish: A rhodopsin-like gene is expressed in cones. Neuron, 1993, 10, 1161-1174.	8.1	163
51	Continued search for the cellular signals that regulate regeneration of dopaminergic neurons in goldfish retina. Developmental Brain Research, 1993, 76, 221-232.	1.7	29
52	Retinal regeneration. Trends in Neurosciences, 1992, 15, 103-108.	8.6	137
53	Immunolocalization of basic fibroblast growth factor and its receptor in adult goldfish retina. Experimental Neurology, 1992, 115, 73-78.	4.1	37
54	Müller glial cells of the goldfish retina are phagocytic in vitro but not in vivo. Experimental Eye Research, 1991, 53, 583-589.	2.6	30

#	Article	IF	CITATIONS
55	Retinal Regeneration in Teleost Fish. Novartis Foundation Symposium, 1991, 160, 171-191.	1.1	24
56	Horizontal cell axon terminals in growing goldfish. Experimental Eye Research, 1990, 51, 675-683.	2.6	8
57	Developing retinotectal projection in larval goldfish. Journal of Comparative Neurology, 1989, 281, 630-640.	1.6	34
58	Regeneration of goldfish retina: Rod precursors are a likely source of regenerated cells. Journal of Neurobiology, 1988, 19, 431-463.	3.6	168
59	Neuronal cell proliferation and ocular enlargement in black moor goldfish. Journal of Comparative Neurology, 1988, 276, 231-238.	1.6	27
60	Axons added to the regenerated visual pathway of goldfish establish a normal fiber topography along the age-axis. Journal of Comparative Neurology, 1988, 277, 420-429.	1.6	9
61	Visual detection by the rod system in goldfish of different sizes. Vision Research, 1988, 28, 211-221.	1.4	25
62	Germinal cells in the goldfish retina that produce rod photoreceptors. Developmental Biology, 1987, 122, 120-138.	2.0	154
63	Use of osmium tetroxide-potassium ferricyanide in reconstructing cells from serial ultrathin sections. Journal of Neuroscience Methods, 1987, 20, 23-33.	2.5	21
64	Cytodifferentiation of photoreceptors in larval goldfish: Delayed maturation of rods. Journal of Comparative Neurology, 1985, 236, 90-105.	1.6	59
65	Cloning of zebrafish vsx1: Expression of a paired-like homeobox gene during CNS development. , 0, .		1