Peter Brodersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7699640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear and cytoplasmic RNA exosomes and PELOTA1 prevent miRNA-induced secondary siRNA production in Arabidopsis. Nucleic Acids Research, 2022, 50, 1396-1415.	14.5	4
2	PAMP-triggered genetic reprogramming involves widespread alternative transcription initiation and an immediate transcription factor wave. Plant Cell, 2022, 34, 2615-2637.	6.6	12
3	Principles of mRNA targeting via the Arabidopsis m6A-binding protein ECT2. ELife, 2021, 10, .	6.0	41
4	The YTHDF proteins ECT2 and ECT3 bind largely overlapping target sets and influence target mRNA abundance, not alternative polyadenylation. ELife, 2021, 10, .	6.0	33
5	Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage inÂvivo. Nucleic Acids Research, 2020, 48, 8767-8781.	14.5	33
6	Characterization of <i>Arabidopsis thaliana</i> Promoter Bidirectionality and Antisense RNAs by Inactivation of Nuclear RNA Decay Pathways. Plant Cell, 2020, 32, 1845-1867.	6.6	50
7	Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis. Development (Cambridge), 2020, 147, .	2.5	46
8	Occurrence and Functions of m ⁶ A and Other Covalent Modifications in Plant mRNA. Plant Physiology, 2020, 182, 79-96.	4.8	80
9	Organismal benefits of transcription speed control at gene boundaries. EMBO Reports, 2020, 21, e49315.	4.5	28
10	Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science, 2019, 366, 878-881.	12.6	80
11	Detection of Slicer Activity by Immunopurified Plant ARGONAUTE1. Methods in Molecular Biology, 2019, 1932, 295-316.	0.9	0
12	The transmembrane autophagy cargo receptors ATI1 and ATI2 interact with ATG8 through intrinsically disordered regions with distinct biophysical properties. Biochemical Journal, 2019, 476, 449-465.	3.7	24
13	An m ⁶ A-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis. Plant Cell, 2018, 30, 952-967.	6.6	187
14	A new class of genic nuclearRNAspecies inArabidopsis. FEBS Letters, 2018, 592, 631-643.	2.8	3
15	Farnesylated heat shock protein 40 is a component of membrane-bound RISC in Arabidopsis. Journal of Biological Chemistry, 2018, 293, 16608-16622.	3.4	18
16	Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance. Genes and Development, 2017, 31, 2282-2295.	5.9	33
17	mRNA Decay of Most Arabidopsis miRNA Targets Requires Slicer Activity of AGO1. Plant Physiology, 2016, 171, 2620-2632.	4.8	54
18	The Slicer Activity of ARGONAUTE1 is Required Specifically for the Phasing, Not Production, of Trans-Acting Short Interfering RNAs in Arabidopsis. Plant Cell, 2016, 28, tpc.00121.2016.	6.6	62

Peter Brodersen

#	Article	IF	CITATIONS
19	Retromer Contributes to Immunity-Associated Cell Death in Arabidopsis. Plant Cell, 2015, 27, 463-479.	6.6	67
20	SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in <i>Arabidopsis</i> . Nucleic Acids Research, 2015, 43, 10975-10988.	14.5	109
21	Lessons on RNA Silencing Mechanisms in Plants from Eukaryotic Argonaute Structures. Plant Cell, 2013, 25, 22-37.	6.6	120
22	lsoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1778-1783.	7.1	101
23	Biochemical Evidence for Translational Repression by <i>Arabidopsis</i> MicroRNAs. Plant Cell, 2009, 21, 1762-1768.	6.6	289
24	Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 2008, 320, 1185-1190.	12.6	1,352