Zhenjiang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7698183/publications.pdf

Version: 2024-02-01

51	21,464	28 h-index	51
papers	citations		g-index
59	59	59	24987
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Gut Microbiome-Targeted Modulations Regulate Metabolic Profiles and Alleviate Altitude-Related Cardiac Hypertrophy in Rats. Microbiology Spectrum, 2022, 10, e0105321.	1.2	10
2	Green Banana Flour Contributes to Gut Microbiota Recovery and Improves Colonic Barrier Integrity in Mice Following Antibiotic Perturbation. Frontiers in Nutrition, 2022, 9, 832848.	1.6	5
3	Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Science China Life Sciences, 2022, 65, 2093-2113.	2.3	19
4	Microbial and Nonvolatile Chemical Diversities of Chinese Dark Teas Are Differed by Latitude and Pile Fermentation. Journal of Agricultural and Food Chemistry, 2022, 70, 5701-5714.	2.4	11
5	Diurnal and eating-associated microbial patterns revealed via high-frequency saliva sampling. Genome Research, 2022, 32, 1112-1123.	2.4	3
6	Toxicant substitutes in immunological assays for mycotoxins detection: A mini review. Food Chemistry, 2021, 344, 128589.	4.2	14
7	PM2RA: A Framework for Detecting and Quantifying Relationship Alterations in Microbial Community. Genomics, Proteomics and Bioinformatics, 2021, 19, 154-167.	3.0	4
8	Zebrafish model for human gut microbiome-related studies: advantages and limitations. Medicine in Microecology, 2021, 8, 100042.	0.7	17
9	A Pilot Study of Microbial Succession in Human Rib Skeletal Remains during Terrestrial Decomposition. MSphere, 2021, 6, e0045521.	1.3	12
10	Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome, 2021, 9, 184.	4.9	259
11	Vitamin D metabolites and the gut microbiome in older men. Nature Communications, 2020, 11, 5997.	5.8	88
12	Puerarin Rebuilding the Mucus Layer and Regulating Mucin-Utilizing Bacteria to Relieve Ulcerative Colitis. Journal of Agricultural and Food Chemistry, 2020, 68, 11402-11411.	2.4	43
13	Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes, 2020, 11, 1758-1773.	4.3	7 3
14	Multiple-Disease Detection and Classification across Cohorts via Microbiome Search. MSystems, 2020, 5, .	1.7	16
15	Chlorogenic acid attenuates cadmium-induced intestinal injury in Sprague–Dawley rats. Food and Chemical Toxicology, 2019, 133, 110751.	1.8	31
16	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37, 852-857.	9.4	11,167
17	An examination of data from the American Gut Project reveals that the dominance of the genus <i>Bifidobacterium</i> is associated with the diversity and robustness of the gut microbiota. MicrobiologyOpen, 2019, 8, e939.	1.2	27
18	Intermittent Hypoxia and Hypercapnia Reproducibly Change the Gut Microbiome and Metabolome across Rodent Model Systems. MSystems, 2019, 4, .	1.7	24

#	Article	IF	Citations
19	Calour: an Interactive, Microbe-Centric Analysis Tool. MSystems, 2019, 4, .	1.7	28
20	Trace Evidence Potential in Postmortem Skin Microbiomes: From Death Scene to Morgue. Journal of Forensic Sciences, 2019, 64, 791-798.	0.9	40
21	Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information. MSystems, 2018, 3, .	1.7	376
22	Guiding longitudinal sampling in IBD cohorts. Gut, 2018, 67, 1743-1745.	6.1	32
23	Striped UniFrac: enabling microbiome analysis at unprecedented scale. Nature Methods, 2018, 15, 847-848.	9.0	71
24	Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (<i>Oreochromis shiranus</i>) and North African catfish (<i>Clarias gariepinus</i>). MicrobiologyOpen, 2018, 7, e00716.	1.2	23
25	Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nature Communications, 2018, 9, 2017.	5.8	103
26	Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models. Genes, 2018, 9, 104.	1.0	80
27	Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. MSystems, 2017, 2, .	1.7	1,339
28	Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 2017, 5, 27.	4.9	1,434
29	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
30	Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. MSystems, $2016, 1, .$	1.7	367
31	Experiment-Assisted Secondary Structure Prediction with RNAstructure. Methods in Molecular Biology, 2016, 1490, 163-176.	0.4	20
32	Secondary Structure Prediction of Single Sequences Using RNAstructure. Methods in Molecular Biology, 2016, 1490, 15-34.	0.4	21
33	Prediction of Secondary Structures Conserved in Multiple RNA Sequences. Methods in Molecular Biology, 2016, 1490, 35-50.	0.4	7
34	Lifestyle chemistries from phones for individual profiling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7645-E7654.	3.3	55
35	Tiny microbes, enormous impacts: what matters in gut microbiome studies?. Genome Biology, 2016, 17, 217.	3.8	128
36	Microbial community assembly and metabolic function during mammalian corpse decomposition. Science, 2016, 351, 158-162.	6.0	381

#	Article	IF	CITATIONS
37	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 2016, 10, 1669-1681.	4.4	593
38	Discovery of Novel ncRNA Sequences in Multiple Genome Alignments on the Basis of Conserved and Stable Secondary Structures. PLoS ONE, 2015, 10, e0130200.	1.1	26
39	Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary \hat{l}^2 -glucan supplementation. Biochemical and Biophysical Research Communications, 2015, 458, 98-103.	1.0	45
40	Ribosomal RNA, the lens into life. Rna, 2015, 21, 692-694.	1.6	3
41	Subsistence strategies in traditional societies distinguish gut microbiomes. Nature Communications, 2015, 6, 6505.	5.8	449
42	Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. Cell Host and Microbe, 2015, 18, 296-306.	5.1	204
43	Structural basis for diversity in the SAM clan of riboswitches. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6624-6629.	3.3	57
44	Which is more important for classifying microbial communities: who's there or what they can do?. ISME Journal, 2014, 8, 2357-2359.	4.4	82
45	Advancing Our Understanding of the Human Microbiome Using QIIME. Methods in Enzymology, 2013, 531, 371-444.	0.4	553
46	Statistical evaluation of improvement in RNA secondary structure prediction. Nucleic Acids Research, 2012, 40, e26-e26.	6.5	23
47	Air proteins control differential TRAMP substrate specificity for nuclear RNA surveillance. Rna, 2012, 18, 1934-1945.	1.6	25
48	Deep sequencing-based identification of small non-coding RNAs inStreptomyces coelicolor. RNA Biology, 2011, 8, 468-477.	1.5	100
49	Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences. Bioinformatics, 2011, 27, 626-632.	1.8	54
50	SEQEL: a tool for biological sequence manipulation in Emacs. Bioinformatics Advances, 0, , .	0.9	0
51	Cancer type classification using plasma cell-free RNAs derived from human and microbes. ELife, 0, 11 , .	2.8	23