Marc Benedetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7696149/publications.pdf

Version: 2024-02-01

162 10,992 53
papers citations h-index

101 g-index

168 168 all docs citations

168 times ranked 10722 citing authors

#	Article	IF	Citations
1	Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Letters, 2006, 6, 866-870.	9.1	1,481
2	lon binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 151, 147-166.	4.7	708
3	Metal Ion Binding to Humic Substances: Application of the Non-Ideal Competitive Adsorption Model. Environmental Science & Technology, 1995, 29, 446-457.	10.0	545
4	Metal Ion Binding by Humic Acid:Â Application of the NICA-Donnan Model. Environmental Science & Emp; Technology, 1996, 30, 1687-1698.	10.0	498
5	Characterization and Copper Binding of Humic and Nonhumic Organic Matter Isolated from the South Platte River:Â Evidence for the Presence of Nitrogenous Binding Site. Environmental Science & Emp; Technology, 2003, 37, 328-336.	10.0	297
6	Amazon River carbon dioxide outgassing fuelled by wetlands. Nature, 2014, 505, 395-398.	27.8	293
7	Humic Substances Considered as a Heterogeneous Donnan Gel Phase. Environmental Science & Emp; Technology, 1996, 30, 1805-1813.	10.0	292
8	Analytical Isotherm Equations for Multicomponent Adsorption to Heterogeneous Surfaces. Journal of Colloid and Interface Science, 1994, 166, 51-60.	9.4	276
9	Metal ion binding by natural organic matter: From the model to the field. Geochimica Et Cosmochimica Acta, 1996, 60, 2503-2513.	3.9	229
10	Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite. Geochimica Et Cosmochimica Acta, 2008, 72, 4886-4900.	3.9	165
11	Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma, 2003, 113, 341-355.	5.1	163
12	Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biology and Biochemistry, 2009, 41, 969-977.	8.8	161
13	Stable Isotopes of Cu and Zn in Higher Plants: Evidence for Cu Reduction at the Root Surface and Two Conceptual Models for Isotopic Fractionation Processes. Environmental Science & Environmental Sci	10.0	158
14	pH Dependent Charging Behavior of Isolated Cell Walls of a Gram-Positive Soil Bacterium. Journal of Colloid and Interface Science, 1995, 173, 354-363.	9.4	156
15	Competitive Binding of Protons, Calcium, Cadmium, and Zinc to Isolated Cell Walls of a Gram-Positive Soil Bacterium. Environmental Science & Environme	10.0	154
16	Plant-induced weathering of a basaltic rock: experimental evidence. Geochimica Et Cosmochimica Acta, 2001, 65, 137-152.	3.9	150
17	Zinc Isotopic Fractionation: Why Organic Matters. Environmental Science & Emp; Technology, 2009, 43, 5747-5754.	10.0	142
18	Metal ion binding to iron oxides. Geochimica Et Cosmochimica Acta, 2006, 70, 2679-2698.	3.9	135

#	Article	IF	CITATIONS
19	Mud volcano field seaward of the Barbados Accretionary Complex: A submersible survey. Journal of Geophysical Research, 1990, 95, 8931-8943.	3.3	112
20	Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil). Geochimica Et Cosmochimica Acta, 2004, 68, 3079-3094.	3.9	108
21	Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Applied Catalysis A: General, 2010, 386, 132-139.	4.3	104
22	Lead and Calcium Binding to Fulvic Acids:Â Salt Effect and Competition. Environmental Science & Eamp; Technology, 1999, 33, 3398-3404.	10.0	103
23	Effect of dissolved organic matter composition on metal speciation in soil solutions. Chemical Geology, 2015, 398, 61-69.	3.3	102
24	Occurrence of Zn/Al hydrotalcite in smelter-impacted soils from northern France: Evidence from EXAFS spectroscopy and chemical extractions. American Mineralogist, 2003, 88, 509-526.	1.9	101
25	In situ study of binding of copper by fulvic acid: Comparison of differential absorbance data and model predictions. Water Research, 2013, 47, 588-596.	11.3	99
26	Remobilization of arsenic from buried wastes at an industrial site: mineralogical and geochemical control. Applied Geochemistry, 1999, 14, 1031-1048.	3.0	94
27	Effect of Aluminum Competition on Lead and Cadmium Binding to Humic Acids at Variable Ionic Strength. Environmental Science & Technology, 2000, 34, 5137-5143.	10.0	94
28	The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments. Geochimica Et Cosmochimica Acta, 1996, 60, 3643-3656.	3.9	89
29	The Amazon River: behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimões confluence. Chemical Geology, 2003, 197, 271-285.	3.3	87
30	Quantifying metal ions binding onto dissolved organic matter using log-transformed absorbance spectra. Water Research, 2013, 47, 2603-2611.	11.3	87
31	Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France. Geochimica Et Cosmochimica Acta, 2011, 75, 2295-2308.	3.9	86
32	Mechanism of gold transfer and deposition in a supergene environment. Geochimica Et Cosmochimica Acta, 1991, 55, 1539-1547.	3.9	85
33	Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles). Chemical Geology, 2015, 414, 28-41.	3.3	85
34	Water-rock interactions in tropical catchments: field rates of weathering and biomass impact. Chemical Geology, 1994, 118, 203-220.	3.3	77
35	Uranium colloidal transport and origin of the 234U–238U fractionation in surface waters: new insights from Mount Cameroon. Chemical Geology, 2003, 202, 365-381.	3.3	70
36	Modeling the Interactions between Humics, Ions, and Mineral Surfacesâ€. Environmental Science & Environmental Science & Technology, 2006, 40, 7473-7480.	10.0	70

#	Article	IF	CITATIONS
37	Zn Isotope Fractionation during Sorption onto Kaolinite. Environmental Science & Emp; Technology, 2016, 50, 1844-1852.	10.0	70
38	Field-flow fractionation characterization and binding properties of particulate and colloidal organic matter from the Rio Amazon and Rio Negro. Organic Geochemistry, 2002, 33, 269-279.	1.8	69
39	Chemical weathering of basaltic lava flows undergoing extreme climatic conditions: the water geochemistry record. Chemical Geology, 2003, 201, 1-17.	3.3	67
40	Using Spectrophotometric Titrations To Characterize Humic Acid Reactivity at Environmental Concentrations. Environmental Science & Environmental & Env	10.0	67
41	Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochimica Et Cosmochimica Acta, 2018, 230, 1-16.	3.9	67
42	In-Situ Investigation of Interactions between Magnesium Ion and Natural Organic Matter. Environmental Science & Dr. Technology, 2015, 49, 8323-8329.	10.0	65
43	Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300°C range and at 50MPa. Geochimica Et Cosmochimica Acta, 2015, 154, 201-211.	3.9	65
44	Association of calcium with colloidal particles and speciation of calcium in the Kalix and Amazon rivers. Geochimica Et Cosmochimica Acta, 2004, 68, 4059-4075.	3.9	64
45	Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere, 2006, 65, 1362-1370.	8.2	64
46	Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environmental Pollution, 2006, 142, 521-529.	7. 5	64
47	Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chemical Geology, 2011, 280, 65-78.	3.3	64
48	Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils. Environmental Pollution, 2009, 157, 1249-1257.	7. 5	63
49	Exopolysaccharides protect Synechocystis against the deleterious effects of Titanium dioxide nanoparticles in natural and artificial waters. Journal of Colloid and Interface Science, 2013, 405, 35-43.	9.4	61
50	Quantifying Pb and Cd Complexation by Alginates and the Role of Metal Binding on Macromolecular Aggregation. Biomacromolecules, 2005, 6, 2756-2764.	5.4	60
51	Modeling Iron Binding to Organic Matterâ€. Environmental Science & Technology, 2006, 40, 7488-7493.	10.0	60
52	Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids and Surfaces B: Biointerfaces, 2013, 102, 158-164.	5.0	57
53	Gold and iron oxide associations under supergene conditions: An experimental approach. Geochimica Et Cosmochimica Acta, 1996, 60, 1531-1542.	3.9	55
54	Application of Zn isotopes in environmental impact assessment of Zn–Pb metallurgical industries: A mini review. Applied Geochemistry, 2016, 64, 128-135.	3.0	54

#	Article	IF	Citations
55	The geochemical filter of large river confluences. Chemical Geology, 2016, 441, 191-203.	3.3	53
56	Chemical distribution of trivalent iron in riverine material from a tropical ecosystem: a quantitative EPR study. Water Research, 1999, 33, 2726-2734.	11.3	52
57	The iron status in colloidal matter from the Rio Negro, Brasil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217, 1-9.	4.7	52
58	Organic complexation and translocation of ferric iron in podzols of the Negro River watershed. Separation of secondary Fe species from Al species. Geochimica Et Cosmochimica Acta, 2009, 73, 1813-1825.	3.9	52
59	Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds. Chemical Geology, 2013, 351, 229-244.	3.3	52
60	Removal of dissolved rhenium by sorption onto organic polymers: study of rhenium as an analogue of radioactive technetium. Water Research, 2004, 38, 448-454.	11.3	51
61	Colloidal α-Al ₂ O _{3,} Europium(III) and Humic Substances Interactions: A Macroscopic and Spectroscopic Study. Environmental Science & Environmental Scienc	10.0	51
62	Characterization of humic acid reactivity modifications due to adsorption onto \hat{l} ±-Al2O3. Water Research, 2012, 46, 731-740.	11.3	50
63	Chemical signature of magnetotactic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1699-1703.	7.1	49
64	Dissolved organic matter dynamic in the Amazon basin: Sorption by mineral surfaces. Chemical Geology, 2011, 286, 158-168.	3.3	48
65	Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: Comparison of data interpretation based on NICA-Donnan and Stockholm humic models. Water Research, 2013, 47, 5439-5446.	11.3	48
66	Adsorption mechanisms of trivalent gold on iron- and aluminum-(oxy)hydroxides. Part 1: X-ray absorption and Raman scattering spectroscopic studies of Au(III) adsorbed on ferrihydrite, goethite, and boehmite. Geochimica Et Cosmochimica Acta, 2004, 68, 3019-3042.	3.9	46
67	Speciation, Size Fractionation and Transport of Trace Elements in the Continuum Soil Water–Mire–Humic Lake–River–Large Oligotrophic Lake of a Subarctic Watershed. Aquatic Geochemistry, 2016, 22, 65-95.	1.3	45
68	Spectroscopic characterization of the competitive binding of Eu(III), Ca(II), and Cu(II) to a sedimentary originated humic acid. Chemical Geology, 2009, 264, 154-161.	3.3	41
69	Combining Spectroscopic and Potentiometric Approaches to Characterize Competitive Binding to Humic Substances. Environmental Science & Environmental S	10.0	40
70	TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment. Journal of Analytical Atomic Spectrometry, 2017, 32, 1400-1411.	3.0	39
71	Carbon and metal concentrations, size distributions and fluxes in major rivers of the Amazon basin. Hydrological Processes, 2003, 17, 1363-1377.	2.6	37
72	Uncoated and coated ZnO nanoparticle life cycle in synthetic seawater. Environmental Toxicology and Chemistry, 2014, 33, 341-349.	4.3	37

#	Article	IF	Citations
73	Effects of charging on the chromophores of dissolved organic matter from the Rio Negro basin. Water Research, 2014, 59, 154-164.	11.3	36
74	Donnan Membrane Approach: From Equilibrium to Dynamic Speciation. Environmental Science & Emp; Technology, 2006, 40, 5496-5501.	10.0	35
75	Characterizing Soil Dissolved Organic Matter in Typical Soils from China Using Fluorescence EEM–PARAFAC and UV–Visible Absorption. Aquatic Geochemistry, 2020, 26, 71-88.	1.3	35
76	Iron speciation in interaction with organic matter: Modelling and experimental approach. Journal of Geochemical Exploration, 2006, 88, 166-171.	3.2	34
77	Carbon dioxide biofixation by <i>Chlorella vulgaris</i> at different CO ₂ concentrations and light intensities. Engineering in Life Sciences, 2014, 14, 509-519.	3.6	34
78	Behavior and fate of industrial zinc oxide nanoparticles in a carbonate-rich river water. Chemosphere, 2014, 95, 519-526.	8.2	33
79	Zinc and copper behaviour at the soil-river interface: New insights by Zn and Cu isotopes in the organic-rich Rio Negro basin. Geochimica Et Cosmochimica Acta, 2017, 213, 178-197.	3.9	33
80	Tectonic, climatic and hydrothermal control on sedimentation and water chemistry of northern Lake Malawi (Nyasa), Tanzania. Journal of African Earth Sciences, 2005, 43, 433-446.	2.0	32
81	Characterization of the colloidal organic matter from theÂAmazonian basin by asymmetrical flow field-flow fractionation and size exclusion chromatography. Water Research, 2010, 44, 223-231.	11.3	30
82	Adsorption of strontium and caesium onto an Na-MX80 bentonite: Experiments and building of a coherent thermodynamic modelling. Applied Geochemistry, 2017, 87, 167-175.	3.0	30
83	Metal ion geochemistry in smelter impacted soils and soil solutions. Bulletin - Societie Geologique De France, 2001, 172, 539-548.	2.2	29
84	Nature and properties of suspended solids in the Amazon Basin. Bulletin - Societie Geologique De France, 2002, 173, 67-75.	2.2	29
85	Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach. Environmental Pollution, 2016, 213, 618-627.	7. 5	29
86	Tracing source and evolution of suspended particles in the Rio Negro Basin (Brazil) using chemical species of iron. Chemical Geology, 2011, 280, 79-88.	3.3	28
87	Multiâ€element stable isotopic dilution and multiâ€surface modelling to assess the speciation and reactivity of cadmium and copper in soil. European Journal of Soil Science, 2015, 66, 973-982.	3.9	28
88	Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils: Stable isotope dilution, chemical extraction and model views. Environmental Pollution, 2017, 225, 654-662.	7.5	27
89	Adsorption of strontium and caesium onto an Na-illite and Na-illite/Na-smectite mixtures: Implementation and application of a multi-site ion-exchange model. Applied Geochemistry, 2018, 99, 65-74.	3.0	26
90	Fate of particulate copper and zinc isotopes at the Solimões-Negro river confluence, Amazon Basin, Brazil. Chemical Geology, 2018, 489, 1-15.	3.3	26

#	Article	IF	Citations
91	Phytoavailability of zirconium in relation to its initial added form and soil characteristics. Plant and Soil, 2006, 287, 313-325.	3.7	25
92	Metal ion binding to colloids from database to field systems. Journal of Geochemical Exploration, 2006, 88, 81-85.	3.2	24
93	Flow and fate of silver nanoparticles in small French catchments under different land-uses: The first one-year study. Water Research, 2020, 176, 115722.	11.3	24
94	Metals in the Aquatic Environmentâ€"Interactions and Implications for the Speciation and Bioavailability: A Critical Overview. Aquatic Geochemistry, 2015, 21, 231-257.	1.3	22
95	Electrochemical methodology to study labile trace metal/natural organic matter complexation at low concentration levels in natural waters. Analytica Chimica Acta, 2004, 521, 77-86.	5.4	21
96	Contribution of siderite–water interaction for the unconventional generation of hydrocarbon gases in the Solimões basin, north-west Brazil. Marine and Petroleum Geology, 2016, 71, 168-182.	3.3	21
97	Podzolisation and exportation of organic matter in black waters of the Rio Negro (upper Amazon) Tj ETQq $1\ 1\ 0.7$	784314 rg 3.5	BT/Overlock
98	Spectroscopic in situ examination of interactions of rare earth ions with humic substances. Water Research, 2015, 68, 273-281.	11.3	20
99	Lead distribution in soils impacted by a secondary lead smelter: Experimental and modelling approaches. Science of the Total Environment, 2016, 568, 155-163.	8.0	20
100	Exploring Cd, Cu, Pb, and Zn dynamic speciation in mining and smelting-contaminated soils with stable isotopic exchange kinetics. Applied Geochemistry, 2016, 64, 157-163.	3.0	20
101	Isotopically Labeled Nanoparticles at Relevant Concentrations: How Low Can We Go? The Case of CdSe/ZnS QDs in Surface Waters. Environmental Science &	10.0	20
102	Modelling Eu(III) speciation in a Eu(III)/PAHA/ \hat{l}_{\pm} -Al2O3 ternary system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 9-15.	4.7	19
103	Eu(III)–Fulvic Acid Complexation: Evidence of Fulvic Acid Concentration Dependent Interactions by Time-Resolved Luminescence Spectroscopy. Environmental Science & Environmental Science & 1006, 50, 3706-3713.	10.0	19
104	Rare earth elements in the Amazon basin. Hydrological Processes, 2003, 17, 1379-1392.	2.6	18
105	How Microbial Biofilms Control the Environmental Fate of Engineered Nanoparticles?. Frontiers in Environmental Science, 2020, 8, .	3.3	18
106	Effect of Radiation-Induced Amorphization on Smectite Dissolution. Environmental Science & Emp; Technology, 2010, 44, 2509-2514.	10.0	17
107	uFREASI: user-FRiendly Elemental dAta procesSIng. A free and easy-to-use tool for elemental data treatment. Microchemical Journal, 2015, 121, 32-40.	4.5	17
108	Isolation and purification treatments change the metal-binding properties of humic acids: effect of HF/HCl treatment. Environmental Chemistry, 2017, 14, 417.	1.5	17

#	Article	IF	CITATIONS
109	Occurrence and Origins of Cerium Dioxide and Titanium Dioxide Nanoparticles in the Loire River (France) by Single Particle ICP-MS and FEG-SEM Imaging. Frontiers in Environmental Science, 2020, 8, .	3.3	17
110	Effect of natural organic matter on thallium and silver speciation. Journal of Environmental Sciences, 2020, 93, 185-192.	6.1	17
111	Biogeochemical characteristics of organic matter in the particulate and colloidal fractions downstream of the rio Negro and Solimoes rivers confluence. Agronomy for Sustainable Development, 2000, 20, 477-490.	0.8	17
112	Sr isotopic evidence for ion-exchange buffering in tropical laterites from the Paran \tilde{A}_i , Brazil. Chemical Geology, 1997, 136, 219-232.	3.3	16
113	Application of permeation liquid membrane and scanned stripping chronopotentiometry to metal speciation analysis of colloidal complexes. Analytica Chimica Acta, 2007, 589, 261-268.	5. 4	16
114	Influence of solution parameters on europium(III), α-Al2O3, and humic acid interactions: Macroscopic and time-resolved laser-induced luminescence data. Geochimica Et Cosmochimica Acta, 2013, 123, 35-54.	3.9	16
115	Colloids and suspended particulate matters influence on Ni availability in surface waters of impacted ultramafic systems in Brazil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 36-47.	4.7	14
116	The fate of C4 and C3 macrophyte carbon in central Amazon floodplain waters: Insights from a batch experiment. Limnologica, 2016, 59, 90-98.	1.5	14
117	Zn isotopes fractionation during slags' weathering: One source of contamination, multiple isotopic signatures. Chemosphere, 2018, 195, 483-490.	8.2	14
118	Detection of nanoparticles by single-particle ICP-MS with complete transport efficiency through direct nebulization at few-microlitres-per-minute uptake rates. Analytical and Bioanalytical Chemistry, 2021, 413, 923-933.	3.7	14
119	Transfer and deposition of gold in the Congo watershed. Earth and Planetary Science Letters, 1990, 100, 108-117.	4.4	13
120	Comparison of the properties of standard soil and aquatic fulvic and humic acids based on the data of differential absorbance and fluorescence spectroscopy. Chemosphere, 2020, 261, 128189.	8.2	13
121	Sources of dissolved organic carbon in small volcanic mountainous tropical rivers, examples from Guadeloupe (French West Indies). Geoderma, 2016, 282, 129-138.	5.1	12
122	Element variability in lacustrine systems of Terra Nova Bay (Antarctica) and concentration evolution in surface waters. Chemosphere, 2017, 180, 343-355.	8.2	12
123	Variation of the isotopic composition of dissolved organic carbon during the runoff cycle in the Amazon River and the floodplains. Comptes Rendus - Geoscience, 2018, 350, 65-75.	1.2	12
124	A comprehensive probabilistic approach for integrating natural variability and parametric uncertainty in the prediction of trace metals speciation in surface waters. Environmental Pollution, 2018, 242, 1087-1097.	7.5	12
125	Mechanisms affecting stormflow generation and solute behaviour in a Sahelian headwater catchment. Journal of Hydrology, 2007, 337, 104-116.	5.4	11
126	Study of Ni exchangeable pool speciation in ultramafic and mining environments with isotopic exchange kinetic data and models. Applied Geochemistry, 2016, 64, 146-156.	3.0	11

#	Article	IF	CITATIONS
127	Formation of mixed Eu(III)-CO3-fulvic acid complex: Spectroscopic evidence and NICA-Donnan modeling. Chemical Geology, 2019, 522, 175-185.	3.3	11
128	Atmospheric contribution to cations cycling in highly weathered catchment, Guadeloupe (Lesser) Tj ETQq0 0 0 0	rgBŢ <u>/</u> Overl	ock 10 Tf 50
129	Tracing multi-isotopically labelled CdSe/ZnS quantum dots in biological media. Scientific Reports, 2020, 10, 2866.	3.3	11
130	Adsorption of Au on iron oxy-hydroxides using Au-LIIIedge XAFS spectroscopy. Journal of Synchrotron Radiation, 1999, 6, 651-652.	2.4	10
131	Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes. Frontiers in Microbiology, 2015, 6, 1054.	3.5	10
132	Dynamics of silver nanoparticles at the solution/biofilm/mineral interface. Environmental Science: Nano, 2018, 5, 2394-2405.	4.3	10
133	μ-dDIHEN: a new micro-flow liquid sample introduction system for direct injection nebulization in ICP-MS. Journal of Analytical Atomic Spectrometry, 2019, 34, 1553-1563.	3.0	10
134	Geochemistry of waters associated with current karst bauxite formation, southern peninsula of Haiti. Applied Geochemistry, 1989, 4, 37-47.	3.0	9
135	An Isotopic Exchange Kinetic Model to Assess the Speciation of Metal Available Pool in Soil: The Case of Nickel. Environmental Science & Environmental	10.0	9
136	Electron Transfer Drives Metal Cycling in the Critical Zone. Elements, 2020, 16, 185-190.	0.5	8
137	Problems encountered in solid sampling-trace analysis of various geological samples by ETA-ZAAS. Fresenius Zeitschrift Für Analytische Chemie, 1987, 328, 342-345.	0.8	7
138	Experimental study of gold precipitation with synthetic iron hydroxides: HRTM-AEM and M \tilde{A} \P ssbauer spectroscopy investigations. Chemical Geology, 1993, 107, 297-300.	3.3	7
139	Testing nanoeffect onto model bacteria: Impact of speciation and genotypes. Nanotoxicology, 2016, 10, 216-225.	3.0	7
140	Theoretical and experimental investigation of the focusing position in asymmetrical flow field-flow fractionation (AF4). Journal of Chromatography A, 2018, 1561, 67-75.	3.7	7
141	On the use of a multi-site ion-exchange model to predictively simulate the adsorption behaviour of strontium and caesium onto French agricultural soils. Applied Geochemistry, 2021, 132, 105052.	3.0	7
142	How microbial biofilms impact the interactions of Quantum Dots with mineral surfaces?. NanoImpact, 2020, 19, 100247.	4.5	6
143	A frugal implementation of Surface Enhanced Raman Scattering for sensing Zn2+ in freshwaters – In depth investigation of the analytical performances. Scientific Reports, 2020, 10, 1883.	3.3	6
144	Assessing CeO2 and TiO2 Nanoparticle Concentrations in the Seine River and Its Tributaries Near Paris. Frontiers in Environmental Science, 2021, 8, .	3.3	6

#	Article	IF	Citations
145	The Fate of Polyol-Made ZnO and CdS Nanoparticles in Seine River Water (Paris, France). Journal of Nanoscience and Nanotechnology, 2015, 15, 3900-3908.	0.9	5
146	Mobility and transformation of CdSe/ZnS quantum dots in soil: Role of the capping ligands and ageing effect. Chemosphere, 2020, 254, 126868.	8.2	5
147	Aluminum behaviour in some alterites of eastern Amazonia (Brazil). Chemical Geology, 1990, 84, 74-77.	3.3	3
148	Fluorescence Quenching and Energy Transfer Phenomena Associated with the Interactions of Terbium Ion and Humic Acid. Aquatic Geochemistry, 2018, 24, 195-207.	1.3	2
149	Aquatic Organic Matter in the Seine Basin: Sources, Spatio-Temporal Variability, Impact of Urban Discharges and Influence on Micro-pollutant Speciation. Handbook of Environmental Chemistry, 2020, , 217-242.	0.4	2
150	Interactions between model organic compounds and metal oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126858.	4.7	2
151	Uranium (VI) Binding to Humic Substances: Speciation, Estimation of Competition, and Application to Independent Data. Springer Geology, 2011, , 565-572.	0.3	2
152	Present behaviour of gold in lateritic environment Salobo (State of Para - Brazil). Chemical Geology, 1990, 84, 27-29.	3.3	1
153	Speciation of lead in contaminated soil under the influence of plants and phosphate amendment type. European Physical Journal Special Topics, 2003, 107, 381-384.	0.2	1
154	Bioavailability and extractability of copper and zinc in a soil amended with pig slurry: Effect of iron deficiency in the rhizosphere of two grasses., 2005,, 337-363.		1
155	Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model. AIP Conference Proceedings, 2007, , .	0.4	1
156	Solid/liquid ratios of trace elements and radionuclides during a Nuclear Power Plant liquid discharge in the Seine River: Field measurements vs geochemical modeling. Journal of Environmental Radioactivity, 2020, 220-221, 106317.	1.7	1
157	Geochemistry of Engineered Nanoparticles (CdSe/ZnS Quantum Dots) in Surface Waters. Frontiers in Environmental Science, 2020, 8, .	3.3	1
158	Titanium nanoparticles fate in small-sized watersheds under different land-uses. Journal of Hazardous Materials, 2022, 422, 126695.	12.4	1
159	Transfer and deposition of gold in the Congo watershed. Chemical Geology, 1990, 84, 162-163.	3.3	0
160	Metal ions bound to colloids from database to field systems. Diqiu Huaxue, 2006, 25, 269-269.	0.5	0
161	Trace metals dynamics under contrasted land uses: contribution of statistical, isotopic, and EXAFS approaches. Environmental Science and Pollution Research, 2018, 25, 23383-23403.	5.3	0
162	Study of the Optical Properties of Dissolved Organic Matter in the Seine River Catchment (France). , 2013, , 219-223.		0