Mario F Pantoja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7695451/publications.pdf

Version: 2024-02-01

623734 642732 47 567 14 23 citations g-index h-index papers 47 47 47 550 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Analytical Formulation for Loop Antennas Valid from the RF to Optical Regime: A Review. , 2019, , .		O
2	Optimization of Far-Field Radiation From Impedance-Loaded Nanoloops Accelerated by an Exact Analytical Formulation. IEEE Transactions on Antennas and Propagation, 2019, 67, 1448-1458.	5.1	7
3	Design and Optimization of Radiation Pattern Reconfigurable Nanoloop Antennas. , 2018, , .		O
4	Corrections to "HIRF Virtual Testing on C-295 Aircraft Validated With FSV Method―[Aug 14 854-863]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60, 1611-1611.	2.2	1
5	Corrections to "A Comparison of the Performance of THz Photoconductive Antennas―[2014 682-685]. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 937-937.	4.0	O
6	Existence of Superdirective Radiation Modes in Thin-Wire Nanoloops. ACS Photonics, 2017, 4, 509-516.	6.6	9
7	SIVA UAV: A Case Study for the EMC Analysis of Composite Air Vehicles. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1103-1113.	2.2	27
8	Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes. IEEE Transactions on Antennas and Propagation, 2017, 65, 121-133.	5.1	22
9	Analytical Expressions for the Mutual Coupling of Loop Antennas Valid From the RF to Optical Regimes. IEEE Transactions on Antennas and Propagation, 2017, 65, 6889-6903.	5.1	9
10	Theoretrical derivation of mutual coupling and radiation properties of loop antenna arrays valid from rf to optical. , 2017, , .		1
11	Implementation of Open Boundary Problems in Photo-Conductive Antennas by Using Convolutional Perfectly Matched Layers. IEEE Transactions on Antennas and Propagation, 2016, 64, 4919-4922.	5.1	15
12	UAVEMI project: Numerical and experimental EM immunity assessment of UAV for HIRF and lightning indirect effects. , $2016, $, .		10
13	Theoretical derivation of antenna parameters for thin-wire nanoloops. , 2016, , .		2
14	On the Use of Subwavelength Radial Grooves to Support Spoof Surface-Plasmon-Polariton Waves. IEEE Microwave and Wireless Components Letters, 2016, 26, 861-863.	3.2	10
15	Analysis of thin-wire nanoloops as superdirective antennas. , 2016, , .		O
16	Theoretical derivation of the radiation parameters for thin-wire nanoloop antennas., 2016,,.		1
17	A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3081-3093.	4.6	11
18	Time-domain numerical modeling of terahertz receivers based on photoconductive antennas. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2034.	2.1	9

#	Article	IF	Citations
19	Characterization of graphene-based photonic crystal in THz spectrum with finite-difference time domain method. Chinese Physics B, 2014, 23, 094203.	1.4	3
20	Full-wave simulation of THz photoconductive antennas. , 2014, , .		1
21	An Explicit Nodal Space-Time Discontinuous Galerkin Method for Maxwell's Equations. IEEE Microwave and Wireless Components Letters, 2014, 24, 827-829.	3.2	2
22	Causal-Path Local Time-Stepping in the discontinuous Galerkin method for Maxwell's equations. Journal of Computational Physics, 2014, 256, 678-695.	3.8	18
23	A Comparison of the Performance of THz Photoconductive Antennas. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 682-685.	4.0	16
24	On the Numerical Modeling of Terahertz Photoconductive Antennas. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35, 432-444.	2.2	17
25	Time-Domain Numerical Modeling of THz Photoconductive Antennas. IEEE Transactions on Terahertz Science and Technology, 2014, 4, 490-500.	3.1	33
26	Discretization of the CFSâ€PML for computational electromagnetics using discrete differential forms. Microwave and Optical Technology Letters, 2013, 55, 351-357.	1.4	7
27	A Review of Soft Techniques for Electromagnetic Assessment of Concrete Condition. Mathematical Problems in Engineering, 2012, 2012, 1-20.	1.1	1
28	An FDTD Thin-Wire Model for Modeling Carbon Nanotube Dipoles at THz Regime. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 708-711.	4.0	6
29	A Computationally Efficient Method for Simulating Metal-Nanowire Dipole Antennas at Infrared and Longer Visible Wavelengths. IEEE Nanotechnology Magazine, 2012, 11, 239-246.	2.0	5
30	FDTD Modeling of Graphene Devices Using Complex Conjugate Dispersion Material Model. IEEE Microwave and Wireless Components Letters, 2012, 22, 612-614.	3.2	114
31	Time domain simulation of THz photoconductive antennas. , 2012, , .		2
32	Application of neural network and principal component analysis to GPR data., 2011, , .		3
33	EFFICIENT EXCITATION OF WAVEGUIDES IN CRANK-NICOLSON FDTD. Progress in Electromagnetics Research Letters, 2010, 17, 27-38.	0.7	4
34	Simulation of transient phenomena in carbon nanotubes dipoles in the far-infrared regime. , 2010, , .		0
35	Improving the SAR Distribution in Petri-Dish Cell Cultures. Journal of Electromagnetic Waves and Applications, 2010, 24, 815-826.	1.6	14
36	Efficient computational models for optical nanowires. , 2010, , .		0

3

#	Article	IF	CITATIONS
37	TDIE Modeling of Carbon Nanotube Dipoles at Microwave and Terahertz Bands. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 32-35.	4.0	9
38	An undergraduate microwave and RF low-profile laboratory. , 2010, , .		0
39	A New Hybrid DGTD/FDTD Method in 2-D. IEEE Microwave and Wireless Components Letters, 2008, 18, 764-766.	3.2	19
40	How to Create Complex FDTD FORTRAN and C Codes Simply with MATHEMATICA. IEEE Antennas and Propagation Magazine, 2007, 49, 59-67.	1.4	0
41	Particle-Swarm Optimization in Antenna Design: Optimization of Log-Periodic Dipole Arrays. IEEE Antennas and Propagation Magazine, 2007, 49, 34-47.	1.4	51
42	GA design of a thin-wire bow-tie antenna for GPR applications. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 1004-1010.	6.3	32
43	Optimization of antennas using a hybrid Genetic-Algorithm space-mapping algorithm. , 2006, , .		2
44	Microstrip-patch array design using a multiobjective GA. IEEE Antennas and Wireless Propagation Letters, 2005, 4, 100-103.	4.0	24
45	GA design of wire pre-fractal antennas and comparison with other Euclidean geometries. IEEE Antennas and Wireless Propagation Letters, 2003, 2, 238-241.	4.0	22
46	Design of an ultra-broadband V antenna for microwave detection of breast tumors. Microwave and Optical Technology Letters, 2002, 34, 164-166.	1.4	24
47	Unsplit Berenger's PML equations for arbitrary media. Electronics Letters, 2001, 37, 1509.	1.0	4