Cesar Benito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7695353/publications.pdf

Version: 2024-02-01

304602 330025 1,668 79 22 37 citations h-index g-index papers 81 81 81 1208 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Repression of Mitochondrial Citrate Synthase Genes by Aluminum Stress in Roots of Secale cereale and Brachypodium distachyon. Frontiers in Plant Science, 2022, 13, 832981.	1.7	2
2	The rye transcription factor ScSTOP1 regulates the tolerance to aluminum by activating the ALMT1 transporter. Plant Science, 2021, 310, 110951.	1.7	10
3	Sulfate nutrition improves short-term Al3+-stress tolerance in roots of Lolium perenne L. Plant Physiology and Biochemistry, 2020, 148, 103-113.	2.8	7
4	Isolation and characterization of a new <i>MATE</i> gene located in the same chromosome arm of the aluminium tolerance (<i>Alt1)</i> rye locus. Plant Biology, 2020, 22, 691-700.	1.8	5
5	Biochemical, physiological and genetic analysis of aluminum tolerance of different rye species. Environmental and Experimental Botany, 2019, 162, 87-94.	2.0	10
6	Transcriptional profiling of wheat and wheat-rye addition lines to identify candidate genes for aluminum tolerance. Biologia Plantarum, 2018, 62, 741-749.	1.9	6
7	Characterization, genetic diversity, phylogenetic relationships, and expression of the aluminum tolerance MATE1 gene in Secale species. Biologia Plantarum, 2018, 62, 109-120.	1.9	13
8	Molecular cloning of <i>TaMATE2</i> homoeologues potentially related to aluminium tolerance in bread wheat (<i>Triticum aestivum</i> L.). Plant Biology, 2018, 20, 817-824.	1.8	13
9	Leishmaniasis in the major endemic region of Plurinational State of Bolivia: Species identification, phylogeography and drug susceptibility implications. Acta Tropica, 2017, 176, 150-161.	0.9	18
10	Neutral molecular markers support common origin of aluminium tolerance in three congeneric grass species growing in acidic soils. AoB PLANTS, 2017, 9, plx060.	1,2	3
11	Differential Physiological Responses of Portuguese Bread Wheat (Triticum aestivum L.) Genotypes under Aluminium Stress. Diversity, 2016, 8, 26.	0.7	11
12	Molecular diversity and genetic relationships in Secale. Journal of Genetics, 2016, 95, 273-281.	0.4	11
13	Screening and identification of potential sexâ€associated sequences in <i>Danio rerio</i> . Molecular Reproduction and Development, 2015, 82, 756-764.	1.0	13
14	The role of two superoxide dismutase <scp>mRNA</scp> s in rye aluminium tolerance. Plant Biology, 2015, 17, 694-702.	1.8	6
15	On the consequences of aluminium stress in rye: repression of two mitochondrial malate dehydrogenase <scp>mRNA</scp> s. Plant Biology, 2015, 17, 123-133.	1.8	12
16	Brachypodium distachyon: a model species for aluminium tolerance in Poaceae. Functional Plant Biology, 2014, 41, 1270.	1.1	11
17	Pectin methylesterase gene and aluminum tolerance in Secale cereale. Environmental and Experimental Botany, 2014, 107, 125-133.	2.0	21
18	Molecular characterization of the citrate transporter gene <i><scp>TaMATE1</scp></i> and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (<i>Triticum aestivum</i>). Physiologia Plantarum, 2014, 152, 441-452.	2.6	40

#	Article	IF	Citations
19	Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biology, 2013, 13, 134.	1.6	61
20	The ScAACT1 gene at the Q alt5 locus as a candidate for increased aluminum tolerance in rye (Secale) Tj ETQq(0 0 0 rgBT /	Overlock 10 T
21	Genetic Variation in Natural Populations of Stipa tenacissima from Algeria. Biochemical Genetics, 2010, 48, 857-872.	0.8	12
22	From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. Plant and Soil, 2010, 327, 107-120.	1.8	18
23	Allelic frequencies of the 15 STR loci included in the AmpFlSTR® Identifiler™ PCR Amplification Kit in an autochthonous sample from Spain. Forensic Science International, 2007, 173, 241-245.	1.3	28
24	The molecular diversity of different isolates of Beauveria bassiana (Bals.) Vuill. as assessed using intermicrosatellites (ISSRs). Cellular and Molecular Biology Letters, 2007, 12, 240-52.	2.7	26
25	Detection and mapping of SSRs in rye ESTs from aluminium-stressed roots. Molecular Breeding, 2007, 20, 103-115.	1.0	15
26	MOLECULAR CHARACTERIZATION OF TRICHINELLA GENOTYPES BY INTER-SIMPLE SEQUENCE REPEAT POLYMERASE CHAIN REACTION (ISSR-PCR). Journal of Parasitology, 2006, 92, 606-610.	0.3	14
27	Genic heterozygosity, chromosomal interchanges and fitness in rye: any relationship?. Genetica, 2006, 128, 273-286.	0.5	1
28	Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics, 2006, 114, 249-260.	1.8	89
29	A new aluminum tolerance gene located on rye chromosome arm 7RS. Theoretical and Applied Genetics, 2005, 111, 360-369.	1.8	45
30	DNA fingerprint of F1 interspecific hybrids from the Triticeae tribe using ISSRs. Euphytica, 2005, 143, 93-99.	0.6	31
31	Secale cereale inter-microsatellites (SCIMs): chromosomal location and genetic inheritance. Genetica, 2005, 123, 303-311.	0.5	15
32	Chromosomal location of molecular markers linked to aluminum tolerance genes in rye. Czech Journal of Genetics and Plant Breeding, 2005, 41, 288-288.	0.4	2
33	Phylogenetic Relationships among Portuguese Rye Based on Isozyme, RAPD and ISSR Markers. Hereditas, 2004, 134, 229-236.	0.5	33
34	A simple method for the estimation of recombination frequencies and genetic distances. Cellular and Molecular Biology Letters, 2004, 9, 617-34.	2.7	4
35	The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 2002, 104, 845-851.	1.8	227
36	Is the Mnr locus of Triticeae species the same as the Ndh and Dia loci?. Theoretical and Applied Genetics, 2002, 104, 513-517.	1.8	0

#	Article	IF	Citations
37	Chromosomal location of 46 new RAPD markers in rye (Secale cereale L.). Genetica, 2002, 115, 205-211.	0.5	6
38	Chromosomal location of PCR fragments as a source of DNA markers linked to aluminium tolerance genes in rye. Theoretical and Applied Genetics, 1998, 96, 426-434.	1.8	27
39	Molecular markers linked to the aluminium tolerance gene Alt1 in rye (Secale cereale L.). Theoretical and Applied Genetics, 1998, 97, 1104-1109.	1.8	47
40	Genetic control of aluminium tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics, 1997, 95, 393-399.	1.8	74
41	Echinococcus granulosus: genomic and isoenzymatic study of Spanish strains isolated from different intermediate hosts. Veterinary Parasitology, 1996, 63, 273-282.	0.7	16
42	Sex influence on recombination frequency in Secale cereale L Theoretical and Applied Genetics, 1996, 93-93, 926-931.	1.8	10
43	PCR derived molecular markers and phylogenetic relationships in theSecale genus. Biologia Plantarum, 1995, 37, 481-489.	1.9	19
44	A map of rye chromosome 4R with cytological and isozyme markers. Theoretical and Applied Genetics, 1994, 87, 941-946.	1.8	11
45	Rapid identification of Triticeae genotypes from single seeds using the polymerase chain reaction. Plant Molecular Biology, 1993, 21, 181-183.	2.0	56
46	Random amplified polymorphic DNA technique for speciation studies of Echinococcus granulosus. Zeitschrift FĽr Parasitenkunde (Berlin, Germany), 1993, 79, 343-345.	0.8	28
47	Genic heterozygosity and fitness in rye populations with B chromosomes. Heredity, 1992, 69, 406-411.	1.2	4
48	Genetic and cytogenetic maps of chromosomes 1R, 4R, and 7R in cultivated rye (Secale cereale). Genome, 1991, 34, 681-685.	0.9	8
49	High mutability in rye (Secale cereale L.). Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1991, 264, 171-177.	1.2	5
50	NADH dehydrogenase: a new molecular marker for homoeology group 4 in Triticeae. A map of the 4RS chromosome arm in rye. Theoretical and Applied Genetics, 1991, 83, 169-172.	1.8	5
51	Biochemical evidence of a translocation between 6 RL/7 RL chromosome arms in rye (Secale cereale L.). A genetic map of 6R chromosome. Theoretical and Applied Genetics, 1991, 82, 27-32.	1.8	19
52	A map of rye chromosome 2R using isozyme and morphological markers. Theoretical and Applied Genetics, 1991, 82, 112-116.	1.8	13
53	Linkage and cytogenetic maps of genes controlling endosperm storage proteins and isozymes in rye (Secale cereale L.). Theoretical and Applied Genetics, 1990, 79, 347-352.	1.8	27
54	Chromosomal location of adenylate kinase isozymes in Triticeae species. Theoretical and Applied Genetics, 1990, 79, 157-160.	1.8	9

#	Article	IF	CITATIONS
55	Association of four isozyme loci with a reciprocal translocation between 1R/4R chromosomes in cultivated rye (Secale cereale L.). Theoretical and Applied Genetics, 1989, 78, 224-228.	1.8	13
56	Genic heterozygosity maintained by chromosomal interchanges in rye. Heredity, 1988, 60, 47-54.	1,2	7
57	Chromosomal Location of Dimeric Phosphatase Structural Genes in Hexaploid Wheat. Plant Breeding, 1988, 100, 188-192.	1.0	2
58	Genetics of rye phosphatases: evidence of a duplication. Theoretical and Applied Genetics, 1987, 73, 683-689.	1.8	8
59	The peroxidase isozymes of the wheat kernel: tissue and substrate specificity and their chromosomal location. Theoretical and Applied Genetics, 1987, 73, 701-706.	1.8	16
60	Location of genes coding isozyme markers on Aegilops umbellulata chromosomes adds data on homoeology among Triticeae chromosomes. Theoretical and Applied Genetics, 1987, 73, 581-588.	1.8	19
61	Leaf peroxidases – A biochemical marker for the group 2 chromosomes in the Triticinae. Genetical Research, 1986, 47, 103-107.	0.3	20
62	Biochemical evidence of homoeology between Triticum aestivum and Agropyron intermedium chromosomes. Theoretical and Applied Genetics, 1986, 72, 826-832.	1.8	20
63	Chromosomal location of isozyme markers in wheat-barley addition lines. Theoretical and Applied Genetics, 1985, 70, 192-198.	1.8	18
64	Esterase isozymes in rye? characterization, genetic control and chromosomal location. Theoretical and Applied Genetics, 1985, 71, 136-140.	1.8	24
65	Chromosomal location of α-amylase structural genes in rye (Secale cereale L.). Experientia, 1985, 41, 1180-1181.	1.2	4
66	Chromosomal locations of phosphoglucomutase, phosphoglucose isomerase, and glutamate oxaloacetate transaminase structural genes in different rye cultivars. Genome, 1985, 27, 105-113.	0.7	23
67	ASSOCIATION OF ISOZYMES WITH A RECIPROCAL TRANSLOCATION IN CULTIVATED RYE (SECALE CEREALE L.). Genetics, 1985, 109, 177-193.	1.2	40
68	Phosphogluco mutase â€" a biochemical marker for group 4 chromosomes in the Triticinae. Theoretical and Applied Genetics, 1984, 68, 555-557.	1.8	23
69	Chromosomal location of genes controlling 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase isozymes in cultivated rye. Euphytica, 1983, 32, 783-790.	0.6	19
70	The chromosomal location of malate dehydrogenase isozymes in hexaploid wheat (Triticum aestivum) Tj ETQq0 C))verlock 10 Tf
71	A comparative study of the changes of peroxidase patterns during wheat, rye, and triticale kernel maturation. Canadian Journal of Botany, 1983, 61, 825-829.	1,2	2
72	Identification of hexaploid wheat cultivars based on isozyme patterns. Journal of the Science of Food and Agriculture, 1982, 33, 221-226.	1.7	15

CESAR BENITO

#	Article	IF	CITATION
73	The inheritance of rye seed peroxidases. Theoretical and Applied Genetics, 1982, 61, 341-351.	1.8	43
74	The chromosomal location of factors determining the presence of phenolic compounds in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1982, 61, 125-128.	1.8	1
75	The chromosomal location of phosphatase isozymes of the wheat endosperm. Experientia, 1981, 37, 557-559.	1.2	9
76	Endosperm peroxidase electrophoresis patterns to distinguish tetraploid from hexaploid wheats. Euphytica, 1981, 30, 389-392.	0.6	6
77	The chromosomal location of the embryo plus scutellum alcohol dehydrogenase isozymes in the hexaploid wheat kernel. Euphytica, 1981, 30, 729-734.	0.6	3
78	The inheritance of wheat kernel peroxidases. Journal of Heredity, 1980, 71, 416-418.	1.0	21
79	The chromosomal location of peroxidase isozymes of the wheat kernel. Theoretical and Applied Genetics, 1979, 55, 73-76.	1.8	37