
Camillo Di Giulio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7695135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Olfactory Response to Altitude Hypoxia: A Pilot Study During a Himalayan Trek. Advances in Experimental Medicine and Biology, 2022, , .	1.6	0
2	The effects of exercise training on lipid profile in patients with sarcoidosis. Scientific Reports, 2021, 11, 5551.	3.3	7
3	Volatile organic compounds (VOCs) in exhaled breath as a marker of hypoxia in multiple chemical sensitivity. Physiological Reports, 2021, 9, e15034.	1.7	8
4	Smell and Taste in Severe CoViD-19: Self-Reported vs. Testing. Frontiers in Medicine, 2020, 7, 589409.	2.6	53
5	Comparison of the Effectiveness of High-Intensity Interval Training in Hypoxia and Normoxia in Healthy Male Volunteers: A Pilot Study. BioMed Research International, 2019, 2019, 1-10.	1.9	23
6	Ageing of the carotid body. Journal of Physiology, 2018, 596, 3021-3027.	2.9	11
7	Long Trekking Experience at High Altitude Causes Testicular Volumetric Reduction in Humans: Evidence Based on Magnetic Resonance Imaging. High Altitude Medicine and Biology, 2017, 18, 191-192.	0.9	3
8	The companion dog as a unique translational model for aging. Seminars in Cell and Developmental Biology, 2017, 70, 141-153.	5.0	42
9	Physiological effects of high-altitude trekking on gonadal, thyroid hormones and macrophage migration inhibitory factor (MIF) responses in young lowlander women. Physiological Reports, 2017, 5, e13400.	1.7	16
10	Functional and neurochemical interactions within the amygdala–medial prefrontal cortex circuit and their relevance to emotional processing. Brain Structure and Function, 2017, 222, 1267-1279.	2.3	43
11	The influence of altitude hypoxia on uroflowmetry parameters in women. American Journal of Physiology - Renal Physiology, 2016, 311, F562-F566.	2.7	5
12	Olfactory phenotypic expression unveils human aging. Oncotarget, 2016, 7, 19193-19200.	1.8	16
13	Kilimanjaro Abruzzo expedition: effects of high-altitude trekking on anthropometric, cardiovascular and blood biochemical parameters. Sport Sciences for Health, 2015, 11, 271-278.	1.3	9
14	Coexpression of Galanin and Nestin in the Chemoreceptor Cells of the Human Carotid Body. Advances in Experimental Medicine and Biology, 2015, 885, 77-82.	1.6	8
15	Real time analysis of volatile organic compounds (VOCs) in centenarians. Respiratory Physiology and Neurobiology, 2015, 209, 47-51.	1.6	27
16	Effects of hyperoxic exposure on signal transduction pathways in the lung. Respiratory Physiology and Neurobiology, 2015, 209, 106-114.	1.6	28
17	Hypoxic Ventilatory Reactivity in Experimental Diabetes. Advances in Experimental Medicine and Biology, 2015, 860, 123-132.	1.6	3
18	Volatile organic compounds (VOCs) fingerprint of Alzheimer's disease. Respiratory Physiology and Neurobiology, 2015, 209, 81-84.	1.6	72

#	Article	IF	CITATIONS
19	Selective Expression of Galanin in Neuronal-Like Cells of the Human Carotid Body. Advances in Experimental Medicine and Biology, 2015, 860, 315-323.	1.6	13
20	Tissue Dynamics of the Carotid Body Under Chronic Hypoxia: A Computational Study. Advances in Experimental Medicine and Biology, 2015, 860, 25-39.	1.6	4
21	In the carotid body, galanin is a signal for neurogenesis in young, and for neurodegeneration in the old and in drug-addicted subjects. Frontiers in Physiology, 2014, 5, 427.	2.8	18
22	Adaptation of Olfactory Threshold at High Altitude. Advances in Experimental Medicine and Biology, 2014, 837, 19-22.	1.6	8
23	Chemoresponsiveness and Breath Physiology in Anosmia. Advances in Experimental Medicine and Biology, 2014, 837, 35-39.	1.6	4
24	Inhibition of Peripheral Dopamine Metabolism and the Ventilatory Response to Hypoxia in the Rat. Advances in Experimental Medicine and Biology, 2014, 837, 9-17.	1.6	6
25	Cytoglobin and Neuroglobin in the Human Brainstem and Carotid Body. Advances in Experimental Medicine and Biology, 2013, 788, 59-64.	1.6	7
26	Non-invasive Assessment of Exhaled Breath Pattern in Patients with Multiple Chemical Sensibility Disorder. Advances in Experimental Medicine and Biology, 2013, 756, 179-188.	1.6	19
27	ls Intermittent Hypoxia A Cause of Aging?. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2013, 10, 542-544.	1.6	5
28	Cyclosporine and hyperoxia-induced lung damage in neonatal rats. Respiratory Physiology and Neurobiology, 2013, 187, 41-46.	1.6	15
29	Inflammatory and immunomodulatory mechanisms in the carotid body. Respiratory Physiology and Neurobiology, 2013, 187, 31-40.	1.6	45
30	Pathologies currently identified by exhaled biomarkers. Respiratory Physiology and Neurobiology, 2013, 187, 128-134.	1.6	54
31	Do we age faster in absence of gravity?. Frontiers in Physiology, 2013, 4, 134.	2.8	4
32	Bartonella henselaeInfection Associated with Autoimmune Thyroiditis in a Child. Hormone Research in Paediatrics, 2013, 79, 185-188.	1.8	16
33	Angelo Mosso's Experiments at Very Low Barometric Pressures. High Altitude Medicine and Biology, 2013, 14, 78-79.	0.9	8
34	Proteomic Analysis of the Carotid Body: A Preliminary Study. Advances in Experimental Medicine and Biology, 2013, 756, 349-353.	1.6	1
35	Real-Time Breath Analysis in Type 2 Diabetes Patients During Cognitive Effort. Advances in Experimental Medicine and Biology, 2013, 788, 247-253.	1.6	17
36	PHYSIOLOGY OF AGING IN ITALY. Biophilia, 2013, 3, 14-15.	0.1	0

#	Article	IF	CITATIONS
37	Does man age faster at the everest peak? A hypothesis paper. Journal of Sports Science and Medicine, 2013, 12, 205-6.	1.6	0
38	Human Carotid Body HIF and NGB Expression During Human Development and Aging. Advances in Experimental Medicine and Biology, 2012, 758, 265-271.	1.6	15
39	High-altitude hypoxia and reproduction: is there an environmental limit to the human male reproductive system?. Sport Sciences for Health, 2012, 7, 39-40.	1.3	4
40	Hypoxic Redistribution of Iron and Calcium in the Cat Glomus Cells. Advances in Experimental Medicine and Biology, 2012, 758, 99-103.	1.6	2
41	Spexin Is Expressed in the Carotid Body and Is Upregulated by Postnatal Hyperoxia Exposure. Advances in Experimental Medicine and Biology, 2012, 758, 207-213.	1.6	36
42	Physical exercise at high altitude is associated with a testicular dysfunction leading to reduced sperm concentration but healthy sperm quality. Fertility and Sterility, 2011, 96, 28-33.	1.0	33
43	Variables associated with severe hypoglycemia in children and adolescents with type 1 diabetes: a population-based study. Pediatric Diabetes, 2011, 12, 4-10.	2.9	20
44	Effects of Hypoxia on Nocturnal Erection Quality: A Case Report from the Manaslu Expedition. Journal of Sexual Medicine, 2011, 8, 2386-2390.	0.6	16
45	Reduced pulmonary function is age-dependent in the rat lung in normoxia. European Journal of Medical Research, 2010, 15, 108-11.	2.2	2
46	Interaction of arachidonic acid with electrogenic properties of mouse chemosensory neurons. European Journal of Medical Research, 2010, 15, 79-82.	2.2	5
47	Region-specific effects on brain metabolites of hypoxia and hyperoxia overlaid on cerebral ischemia in young and old rats: a quantitative proton magnetic resonance spectroscopy study. Journal of Biomedical Science, 2010, 17, 14.	7.0	39
48	A four-year old-child with widespread pyoderma gangrenosum resistant to topical treatment. European Journal of Dermatology, 2010, 20, 839-40.	0.6	1
49	Effect of Hypoxia and Aging on PKC Î′â€Mediated SCâ€35 Phosphorylation in Rat Myocardial Tissue. Anatomical Record, 2009, 292, 1135-1142.	1.4	12
50	Dual role of HIF-1α in delivering a survival or death signal in hypoxia exposed human K562 erythroleukemia cells. Cell Biology International, 2009, 33, 49-56.	3.0	5
51	Hypoxic ventilatory decline during the first 7 days of exposure in intermittent mountain altitude between 4400 and 6960 m. Sport Sciences for Health, 2009, 5, 15-19.	1.3	3
52	Carotid Body Sensory Discharge And Glomus Cell Hif-1α Are Regulated By A Common Oxygen Sensor. Advances in Experimental Medicine and Biology, 2009, 645, 87-94.	1.6	3
53	Neuroglobin in Aging Carotid Bodies. Advances in Experimental Medicine and Biology, 2009, 648, 191-195.	1.6	13
54	Iron Chelation and the Ventilatory Response to Hypoxia. Advances in Experimental Medicine and Biology, 2009, 648, 215-221.	1.6	3

#	Article	IF	CITATIONS
55	Physiological Carotid Body Denervation During Aging. Advances in Experimental Medicine and Biology, 2009, 648, 257-263.	1.6	15
56	Long-Term Regulation of Carotid Body Function: Acclimatization and Adaptation – Invited Article. Advances in Experimental Medicine and Biology, 2009, 648, 307-317.	1.6	27
57	"Oxygen Supply―as Modulator of Aging Processes: Hypoxia and Hyperoxia Models for Aging Studies. Current Aging Science, 2009, 2, 95-102.	1.2	27
58	Evidence that chronic hypoxia causes reversible impairment on male fertility. Asian Journal of Andrology, 2008, 10, 602-606.	1.6	75
59	Pampiniform Plexus and Oxidative Stress during Chronic Hypoxia and Hyperoxia. International Journal of Immunopathology and Pharmacology, 2008, 21, 353-357.	2.1	2
60	CO2/H+ Homeostasis: Role of Central and Peripheral Chemoreceptors in Adult Mammals. , 2007, , 229-240.		0
61	Chronic Hypoxia, Physical Exercise and PSA: Correlation during High-Altitude Trekking (2004 K2) Tj ETQq1	0.784314 rgBT 1.3	- /&verlock 1
62	The role of hypoxia in erectile dysfunction mechanisms. International Journal of Impotence Research, 2007, 19, 496-500.	1.8	46
63	PKC α-mediated CREB activation is oxygen and age-dependent in rat myocardial tissue. Histochemistry and Cell Biology, 2007, 127, 327-333.	1.7	15
64	High levels of antioxidant enzymatic defence assure good protection against hypoxic stress in spontaneously diabetic rats. International Journal of Biochemistry and Cell Biology, 2006, 38, 2196-2208.	2.8	16
65	Regional changes in the metabolite profile after long-term hypoxia-ischemia in brains of young and aged rats: A quantitative proton MRS study. Neurobiology of Aging, 2006, 27, 98-104.	3.1	40
66	Vascular Endothelial Growth Factor Expression (VEGF) in Salivary Glands of Young and Old Hyperoxic Rats. European Journal of Inflammation, 2006, 4, 83-96.	0.5	1
67	Prolonged Exposure to Hyperoxia Increases Perivascular Mast Cells in Rat Lungs. Journal of Histochemistry and Cytochemistry, 2006, 54, 1239-1246.	2.5	12
68	Angelo Mosso and muscular fatigue: 116 years after the first congress of physiologists: IUPS commemoration. American Journal of Physiology - Advances in Physiology Education, 2006, 30, 51-57.	1.6	45
69	p53 and p66 Proteins Compete for Hypoxia-Inducible Factor 1 Alpha Stabilization in Young and Old Rat Hearts Exposed to Intermittent Hypoxia. Gerontology, 2006, 52, 17-23.	2.8	41
70	Neuroglobin, a New Oxygen Binding Protein is Present in the Carotid Body and Increases after Chronic Intermittent Hypoxia. , 2006, 580, 15-19.		12
71	HIF-1alpha cytoplasmic accumulation is associated with cell death in old rat cerebral cortex exposed to intermittent hypoxia. Aging Cell, 2005, 4, 177-185.	6.7	59
72	Balance between hypertrophic and hypoxic stimulus in caspase-3 activation during rat heart development. Journal of Molecular Histology, 2005, 36, 217-224.	2,2	1

#	Article	IF	CITATIONS
73	MCP-1 and MIP-2 expression and production in BB diabetic rat: Effect of chronic hypoxia. Molecular and Cellular Biochemistry, 2005, 276, 105-111.	3.1	13
74	Oxygen and life span: chronic hypoxia as a model for studying HIF-1α, VEGF and NOS during aging. Respiratory Physiology and Neurobiology, 2005, 147, 31-38.	1.6	34
75	Molecular and morphological modifications occurring in rat heart exposed to intermittent hypoxia: role for protein kinase C l±. Experimental Gerontology, 2004, 39, 395-405.	2.8	25
76	A Scavenger Role for Nitric Oxide in the Aged Rat Kidney. International Journal of Immunopathology and Pharmacology, 2004, 17, 265-271.	2.1	6
77	Oxygen supply modulates MCP-1 release in monocytes from young and aged rats: decrease of MCP-1 transcription and translation is age-related. Molecular and Cellular Biochemistry, 2003, 248, 1-6.	3.1	8
78	Atrial natriuretic peptide stimulates cat carotid body chemoreceptors in vivo. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2003, 134, 27-31.	1.8	5
79	Correlations between protein kinase C ζ signaling and morphological modifications during rat heart development and aging. Mechanisms of Ageing and Development, 2003, 124, 957-966.	4.6	19
80	Sustained hypoxia promotes hyperactive response of carotid body in the cat. Respiratory Physiology and Neurobiology, 2003, 134, 69-74.	1.6	12
81	The Nitric Oxide Synthesis Inhibitor Nω-Nitro-L-Arginine Methyl Ester (L-NAME) Causes Limb Defects in Mouse Fetuses: Protective Effect of Acute Hyperoxia. Pediatric Research, 2003, 54, 69-76.	2.3	23
82	Selected Contribution: Carotid body as a model for aging studies: is there a link between oxygen and aging?. Journal of Applied Physiology, 2003, 95, 1755-1758.	2.5	25
83	Carotid Body Nitric Oxide Activity in Spontaneously Diabetic BB Rat. Advances in Experimental Medicine and Biology, 2003, 536, 359-366.	1.6	2
84	Carotid Body HIF-1α, VEGF and NOS Expression during Aging and Hypoxia. Advances in Experimental Medicine and Biology, 2003, 536, 603-610.	1.6	16
85	Lessons from chronic intermittent and sustained hypoxia at high altitudes. Respiratory Physiology and Neurobiology, 2002, 130, 223-233.	1.6	39
86	A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiology of Aging, 2002, 23, 719-735.	3.1	280
87	Biochemical and Ultrastructural Alaterations is Rat After Hyperoxic Treatment: Effect of Taurine and Hypotaurine. Advances in Experimental Medicine and Biology, 2002, 483, 149-156.	1.6	1
88	Age-related death-survival balance in myocardium: an immunohistochemical and biochemical study. Mechanisms of Ageing and Development, 2002, 123, 341-350.	4.6	43
89	Role of serotonin2C receptors in the control of brain dopaminergic function. Pharmacology Biochemistry and Behavior, 2002, 71, 727-734.	2.9	141
90	Biochemical evidence that the atypical antipsychotic drugs clozapine and risperidone block 5-HT2C receptors in vivo. Pharmacology Biochemistry and Behavior, 2002, 71, 607-613.	2.9	50

#	Article	IF	CITATIONS
91	Thymic sensitivity to hypoxic condition in young and old rats. Age-dependent expression of NF-κB. Experimental Gerontology, 2002, 37, 1077-1088.	2.8	9
92	Role of 5-HT2C receptors in the control of central dopamine function. Trends in Pharmacological Sciences, 2001, 22, 229-232.	8.7	216
93	The nigrostriatal dopamine system: a minor target for 5-HT2C receptors. Trends in Pharmacological Sciences, 2001, 22, 503-504.	8.7	2
94	Ryanodine receptor-mediated [Ca2+]i release in glomus cells is independent of natural stimuli and does not participate in the chemosensory responses of the rat carotid body. Brain Research, 2001, 916, 32-40.	2.2	5
95	Ultrastructural Modifications and Phosphatidylinositol-3-kinase Expression and Activity in Myocardial Tissue Deriving from Rats in Different Experimental Conditions Cell Structure and Function, 2001, 26, 87-93.	1.1	6
96	Endothelial NOS expression and ischemia–reperfusion in isolated working rat heart from hypoxic and hyperoxic conditions. Biochimica Et Biophysica Acta - General Subjects, 2000, 1524, 203-211.	2.4	33
97	Does chronic hypoxia increase rat carotid body nitric oxide?. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1998, 120, 243-247.	1.8	20
98	Effect of Chronic Hyperoxia on Young and Old Rat Carotid Body Ultrastructure. Experimental Gerontology, 1998, 33, 319-329.	2.8	34
99	Further characterization of stimulus interaction of cat carotid chemoreceptors. Journal of the Autonomic Nervous System, 1998, 71, 196-200.	1.9	7
100	Hypoxic and hyperoxic effect on blood phosphodiesterase activity in young and old rats. Life Sciences, 1998, 63, PL349-PL353.	4.3	9
101	Aging and detoxifying enzymes responses to hypoxic or hyperoxic treatment. Mechanisms of Ageing and Development, 1997, 97, 215-226.	4.6	30
102	Alteration of glutathione transferase subunits composition in the liver of young and aged rats submitted to hypoxic and hyperoxic conditions. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 125-131.	4.1	7
103	Effect of acute and chronic cobalt administration on carotid body chemoreceptors responses. Science of the Total Environment, 1994, 150, 215-216.	8.0	4
104	Potentiometric determination of carbonic anhydrase activity in rabbit carotid bodies: Comparison among normoxic, hyperoxic and hypoxic animals. Neuroscience Letters, 1994, 166, 126-130.	2.1	11
105	Hyperbaric oxygenation alters carotid body ultrastructure and function. Respiration Physiology, 1993, 92, 183-196.	2.7	17
106	Carotid chemoreceptor response to natural stimuli in the newborn kitten. Respiration Physiology, 1992, 87, 183-193.	2.7	64
107	Sympathetic peripheral chemoreflex is independent of expiratory output neurons in the cat. Journal of the Autonomic Nervous System, 1989, 29, 29-39.	1.9	7