
Tsuguyuki Saito

List of Publications by Year
in descending order

Source: https://exaly.com/author-pdf/7695119/publications.pdf

Version: 2024-02-01

196

papers

22,835

citations

68

h-index

13068

148

g-index

8138

204

all docs

204

docs citations

204

times ranked

11515

citing authors



Tsuguyuki Saito

2

# Article IF Citations

1 TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3, 71-85. 2.8 2,446

2 Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules,
2007, 8, 2485-2491. 2.6 2,015

3 Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native
Cellulose. Biomacromolecules, 2006, 7, 1687-1691. 2.6 1,524

4 Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated
Oxidation. Biomacromolecules, 2009, 10, 162-165. 2.6 1,118

5 TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and
Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules, 2004, 5, 1983-1989. 2.6 1,056

6 Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism. Science, 2003,
300, 464-467. 6.0 779

7 Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO
Catalyst under Neutral Conditions. Biomacromolecules, 2009, 10, 1992-1996. 2.6 665

8 An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via
Sonication-Induced Fragmentation. Biomacromolecules, 2013, 14, 248-253. 2.6 507

9 Aerogels with 3D Ordered Nanofiber Skeletons of Liquidâ€•Crystalline Nanocellulose Derivatives as
Tough and Transparent Insulators. Angewandte Chemie - International Edition, 2014, 53, 10394-10397. 7.2 426

10 Relationship between Length and Degree of Polymerization of TEMPO-Oxidized Cellulose Nanofibrils.
Biomacromolecules, 2012, 13, 842-849. 2.6 419
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22 Transparent Cellulose Films with High Gas Barrier Properties Fabricated from Aqueous Alkali/Urea
Solutions. Biomacromolecules, 2011, 12, 2766-2771. 2.6 223

23 Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Progress
in Polymer Science, 2018, 86, 122-148. 11.8 221
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31 Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation.
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32 Superior Reinforcement Effect of TEMPO-Oxidized Cellulose Nanofibrils in Polystyrene Matrix:
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