Lisa A Fortier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7694573/publications.pdf

Version: 2024-02-01

		136950	82547
78	5,436	32	72
papers	citations	h-index	g-index
81	81	81	4980
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dose-Dependent Increase in Whole Blood Omega-3 Fatty Acid Concentration in Horses Receiving a Marine-Based Fatty-Acid Supplement. Journal of Equine Veterinary Science, 2022, 108, 103781.	0.9	1
2	Structural origins of cartilage shear mechanics. Science Advances, 2022, 8, eabk2805.	10.3	8
3	Position Statement: Minimal Criteria for Reporting Veterinary and Animal Medicine Research for Mesenchymal Stromal/Stem Cells in Orthopedic Applications. Frontiers in Veterinary Science, 2022, 9, 817041.	2.2	12
4	Cartilage articulation exacerbates chondrocyte damage and death after impact injury. Journal of Orthopaedic Research, 2021, 39, 2130-2140.	2.3	13
5	Biological Mechanisms for Cartilage Repair Using a BioCartilage Scaffold: Cellular Adhesion/Migration and Bioactive Proteins. Cartilage, 2021, 13, 984S-992S.	2.7	15
6	An Exploratory Study into the Implantation of Arytenoid Cartilage Scaffold in the Horse. Tissue Engineering - Part A, 2021, 27, 165-176.	3.1	0
7	High-Plex RNA Expression Profiling of Formalin-Fixed Paraffin-Embedded Synovial Membrane Indicates Potential Mechanism of Mesenchymal Stromal Cells in the Mitigation of Posttraumatic Osteoarthritis. Cartilage, 2021, , 194760352199352.	2.7	1
8	Clinically Significant Outcomes Following the Treatment of Focal Cartilage Defects of the Knee With Microfracture Augmentation Using Cartilage Allograft Extracellular Matrix: A Multicenter Prospective Study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 1512-1521.	2.7	21
9	Early Failure of a Polyvinyl Alcohol Hydrogel Implant With Osteolysis and Foreign Body Reactions in an Ovine Model of Cartilage Repair. American Journal of Sports Medicine, 2021, 49, 3395-3403.	4.2	2
10	Regulatory T cells provide chondroprotection through increased TIMP1, IL-10 and IL-4, but cannot mitigate the catabolic effects of IL- 1^2 and IL-6 in a tri-culture model of osteoarthritis. Osteoarthritis and Cartilage Open, 2021, 3, 100193.	2.0	5
11	The Effect of Single vs Serial Platelet-Rich Plasma Injections in Osteochondral Lesions Treated With Microfracture: An In Vivo Rabbit Model. American Journal of Sports Medicine, 2021, 49, 3876-3886.	4.2	9
12	Proteomic Analysis and Cell Viability of Nine Amnion, Chorion, Umbilical Cord, and Amniotic Fluid–Derived Products. Cartilage, 2021, 13, 495S-507S.	2.7	10
13	American Society for Bone and Mineral Researchâ€Orthopaedic Research Society Joint Task Force Report on Cellâ€Based Therapies. Journal of Bone and Mineral Research, 2020, 35, 3-17.	2.8	11
14	Platelet-rich plasma for the treatment of knee osteoarthritis: an expert opinion and proposal for a novel classification and coding system. Expert Opinion on Biological Therapy, 2020, 20, 1447-1460.	3.1	118
15	Synovial fluid lubricin and hyaluronan are altered in equine osteochondral fragmentation, cartilage impact injury, and fullâ€ŧhickness cartilage defect models. Journal of Orthopaedic Research, 2020, 38, 1826-1835.	2.3	5
16	One health in regenerative medicine: report on the second Havemeyer symposium on regenerative medicine in horses. Regenerative Medicine, 2020, 15, 1775-1787.	1.7	4
17	Basic Science of Resident Stem Cells. Operative Techniques in Sports Medicine, 2020, 28, 150776.	0.3	1
18	Platelet and Leukocyte Concentration in Equine Autologous Conditioned Plasma Are Inversely Distributed by Layer and Are Not Affected by Centrifugation Rate. Frontiers in Veterinary Science, 2020, 7, 173.	2.2	3

#	Article	IF	CITATIONS
19	Integrin $\hat{l}\pm10\hat{l}^2$ 1-Selected Mesenchymal Stem Cells Mitigate the Progression of Osteoarthritis in an Equine Talar Impact Model. American Journal of Sports Medicine, 2020, 48, 612-623.	4.2	33
20	American Society for Bone and Mineral Researchâ€Orthopaedic Research Society Joint Task Force Report on Cellâ€Based Therapies – Secondary Publication. Journal of Orthopaedic Research, 2020, 38, 485-502.	2.3	7
21	Long-term Evaluation of Meniscal Tissue Formation in 3-dimensional–Printed Scaffolds With Sequential Release of Connective Tissue Growth Factor and TGF-β3 in an Ovine Model. American Journal of Sports Medicine, 2019, 47, 2596-2607.	4.2	32
22	The clot thickens: Autologous and allogeneic fibrin sealants are mechanically equivalent in an ex vivo model of cartilage repair. PLoS ONE, 2019, 14, e0224756.	2.5	21
23	Return to racing after surgical management of third carpal bone slab fractures in thoroughbred and standardbred racehorses. Veterinary Surgery, 2019, 48, 513-523.	1.0	10
24	Biological Effects of Bone Marrow Concentrate in Knee Pathologies. Journal of Knee Surgery, 2019, 32, 002-008.	1.6	26
25	Rhodococcus equi Joint Sepsis and Osteomyelitis Is Associated With a Grave Prognosis in Foals. Frontiers in Veterinary Science, 2019, 6, 503.	2.2	4
26	Mitochondrial dysfunction is an acute response of articular chondrocytes to mechanical injury. Journal of Orthopaedic Research, 2018, 36, 739-750.	2.3	47
27	Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 333-342.	4.2	151
28	Mitoprotective therapy preserves chondrocyte viability and prevents cartilage degeneration in an ex vivo model of posttraumatic osteoarthritis. Journal of Orthopaedic Research, 2018, 36, 2147-2156.	2.3	38
29	Minimally Manipulated Bone Marrow Concentrate Compared with Microfracture Treatment of Full-Thickness Chondral Defects. Journal of Bone and Joint Surgery - Series A, 2018, 100, 138-146.	3.0	36
30	Microscale frictional strains determine chondrocyte fate in loaded cartilage. Journal of Biomechanics, 2018, 74, 72-78.	2.1	47
31	The immunomodulatory function of equine MSCs is enhanced by priming through an inflammatory microenvironment or TLR3 ligand. Veterinary Immunology and Immunopathology, 2018, 195, 33-39.	1.2	32
32	Inflammatory licensed equine MSCs are chondroprotective and exhibit enhanced immunomodulation in an inflammatory environment. Stem Cell Research and Therapy, 2018, 9, 82.	5.5	57
33	Equine mesenchymal stromal cells from different tissue sources display comparable immune-related gene expression profiles in response to interferon gamma (IFN)-γ. Veterinary Immunology and Immunopathology, 2018, 202, 25-30.	1.2	20
34	Short-Term Storage of Platelet-Rich Plasma at Room Temperature Does Not Affect Growth Factor or Catabolic Cytokine Concentration. American Journal of Orthopedics, 2018, 47, .	0.7	9
35	Facilitated recruitment of mesenchymal stromal cells by bone marrow concentrate and platelet rich plasma. PLoS ONE, 2018, 13, e0194567.	2.5	18
36	Two-Year Evaluation of Osteochondral Repair with a Novel Biphasic Graft Saturated in Bone Marrow in an Equine Model. Cartilage, 2017, 8, 406-416.	2.7	12

#	Article	IF	CITATIONS
37	Effect of needle diameter on the viability of equine bone marrow derived mesenchymal stem cells. Veterinary Surgery, 2017, 46, 731-737.	1.0	18
38	Hyaluronic Acid Versus Platelet-Rich Plasma: A Prospective, Double-Blind Randomized Controlled Trial Comparing Clinical Outcomes and Effects on Intra-articular Biology for the Treatment of Knee Osteoarthritis. American Journal of Sports Medicine, 2017, 45, 339-346.	4.2	275
39	Postâ€traumatic osteoarthritis of the ankle: A distinct clinical entity requiring new research approaches. Journal of Orthopaedic Research, 2017, 35, 440-453.	2.3	96
40	Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Research and Therapy, 2017, 8, 288.	5.5	167
41	Human talar and femoral cartilage have distinct mechanical properties near the articular surface. Journal of Biomechanics, 2016, 49, 3320-3327.	2.1	26
42	BioCartilage Improves Cartilage Repair Compared With Microfracture Alone in an Equine Model of Full-Thickness Cartilage Loss. American Journal of Sports Medicine, 2016, 44, 2366-2374.	4.2	108
43	Effect of Leukocyte Concentration on the Efficacy of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis. American Journal of Sports Medicine, 2016, 44, 792-800.	4.2	303
44	Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo. Stem Cell Research and Therapy, 2015, 6, 54.	5.5	110
45	Characterization of Tissue Response to Impact Loads Delivered Using a Hand-Held Instrument for Studying Articular Cartilage Injury. Cartilage, 2015, 6, 226-232.	2.7	27
46	Mesenchymal Stem Cell Therapy: Clinical Progress and Opportunities for Advancement. Current Pathobiology Reports, 2015, 3, 1-7.	3.4	8
47	Role of Platelet-Rich Plasma in Articular Cartilage Injury and Disease. Journal of Knee Surgery, 2015, 28, 003-010.	1.6	63
48	Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. Journal of Experimental Orthopaedics, 2014, 1, 13.	1.8	21
49	Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro. Stem Cell Research and Therapy, 2014, 5, 13.	5.5	116
50	The Anti-inflammatory and Matrix Restorative Mechanisms of Platelet-Rich Plasma in Osteoarthritis. American Journal of Sports Medicine, 2014, 42, 35-41.	4.2	294
51	Increasing Platelet Concentrations in Leukocyte-Reduced Platelet-Rich Plasma Decrease Collagen Gene Synthesis in Tendons. American Journal of Sports Medicine, 2014, 42, 42-49.	4.2	145
52	Considerations for the Use of Platelet-Rich Plasma in Orthopedics. Sports Medicine, 2014, 44, 1025-1036.	6.5	55
53	BioCartilage: Background and Operative Technique. Operative Techniques in Sports Medicine, 2013, 21, 116-124.	0.3	54
54	Comparison of Three Methods to Quantify Repair Cartilage Collagen Orientation. Cartilage, 2013, 4, 111-120.	2.7	16

#	Article	IF	Citations
55	Science and Animal Models of Marrow Stimulation for Cartilage Repair. Journal of Knee Surgery, 2012, 25, 003-008.	1.6	30
56	Interleukinâ€1α, â€6, and â€8 decrease Cdc42 activity resulting in loss of articular chondrocyte phenotype. Journal of Orthopaedic Research, 2012, 30, 246-251.	2.3	22
57	Stem cells in veterinary medicine. Stem Cell Research and Therapy, 2011, 2, 9.	5.5	107
58	Platelet-rich plasma activation in combination with biphasic osteochondral scaffolds–conditions for maximal growth factor production. Knee Surgery, Sports Traumatology, Arthroscopy, 2011, 19, 1942-1947.	4.2	26
59	The Role of Growth Factors in Cartilage Repair. Clinical Orthopaedics and Related Research, 2011, 469, 2706-2715.	1.5	504
60	Equine Models of Articular Cartilage Repair. Cartilage, 2011, 2, 317-326.	2.7	96
61	Synoviocytes are more sensitive than cartilage to the effects of minocycline and doxycycline on IL-1α and MMP-13-induced catabolic gene responses. Journal of Orthopaedic Research, 2010, 28, 522-528.	2.3	30
62	Concentrated Bone Marrow Aspirate Improves Full-Thickness Cartilage Repair Compared with Microfracture in the Equine Model. Journal of Bone and Joint Surgery - Series A, 2010, 92, 1927-1937.	3.0	346
63	The small GTPase Rho mediates articular chondrocyte phenotype and morphology in response to interleukinâ€1α and insulinâ€like growth factorâ€l. Journal of Orthopaedic Research, 2009, 27, 58-64.	2.3	20
64	Temporal growth factor release from plateletâ€rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. Journal of Orthopaedic Research, 2009, 27, 1033-1042.	2.3	312
65	Regenerative Medicine for Tendinous and Ligamentous Injuries of Sport Horses. Veterinary Clinics of North America Equine Practice, 2008, 24, 191-201.	0.7	100
66	Assessment of cartilage degradation effects of matrix metalloproteinase-13 in equine cartilage cocultured with synoviocytes. American Journal of Veterinary Research, 2007, 68, 379-384.	0.6	7
67	Hsp90 mediates insulin-like growth factor 1 and interleukin- $1\hat{l}^2$ signaling in an age-dependent manner in equine articular chondrocytes. Arthritis and Rheumatism, 2007, 56, 2335-2343.	6.7	34
68	Platelet rich plasma (PRP) enhances anabolic gene expression patterns in flexor digitorum superficialis tendons. Journal of Orthopaedic Research, 2007, 25, 230-240.	2.3	337
69	Signaling through the small G-protein Cdc42 is involved in insulin-like growth factor-I resistance in aging articular chondrocytes. Journal of Orthopaedic Research, 2006, 24, 1765-1772.	2.3	21
70	Stem Cells: Classifications, Controversies, and Clinical Applications. Veterinary Surgery, 2005, 34, 415-423.	1.0	158
71	Systemic Therapies for Joint Disease in Horses. Veterinary Clinics of North America Equine Practice, 2005, 21, 547-557.	0.7	8
72	New Surgical Treatments for Osteochondritis Dissecans and Subchondral Bone Cysts. Veterinary Clinics of North America Equine Practice, 2005, 21, 673-690.	0.7	37

#	Article	IF	CITATION
73	Caprine Obstructive Urolithiasis: Requirement for 2nd Surgical Intervention and Mortality After Percutaneous Tube Cystostomy, Surgical Tube Cystostomy, or Urinary Bladder Marsupialization. Veterinary Surgery, 2004, 33, 661-667.	1.0	50
74	Insulin-like growth factor-I diminishes the activation status and expression of the small GTPase Cdc42 in articular chondrocytes. Journal of Orthopaedic Research, 2004, 22, 436-445.	2.3	15
75	Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-I. American Journal of Veterinary Research, 2002, 63, 301-305.	0.6	45
76	Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factorâ€l²1 in monolayer and insulinâ€like growth factorâ€l in a threeâ€dimensional matrix. Journal of Orthopaedic Research, 2001, 19, 738-749.	2.3	242
77	Insulinâ€like growth factorâ€l gene expression patterns during spontaneous repair of acute articular cartilage injury. Journal of Orthopaedic Research, 2001, 19, 720-728.	2.3	56
78	Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with exogenous insulin-like growth factor-I. Journal of Orthopaedic Research, 1999, 17, 467-474.	2.3	92