
Robert S Zucker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7692583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short-Term Synaptic Plasticity. Annual Review of Physiology, 2002, 64, 355-405.	13.1	3,888
2	Short-Term Synaptic Plasticity. Annual Review of Neuroscience, 1989, 12, 13-31.	10.7	1,406
3	Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science, 1988, 242, 81-84.	12.6	851
4	Calcium- and activity-dependent synaptic plasticity. Current Opinion in Neurobiology, 1999, 9, 305-313.	4.2	561
5	Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron, 1993, 10, 21-30.	8.1	515
6	Intracellular calcium release at fertilization in the sea urchin egg. Developmental Biology, 1977, 58, 185-196.	2.0	501
7	Selective Induction of LTP and LTD by Postsynaptic [Ca ²⁺] _i Elevation. Journal of Neurophysiology, 1999, 81, 781-787.	1.8	463
8	Mitochondrial Involvement in Post-Tetanic Potentiation of Synaptic Transmission. Neuron, 1997, 18, 483-491.	8.1	413
9	Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophysical Journal, 1994, 67, 2546-2557.	0.5	332
10	Residual Ca2 + and short-term synaptic plasticity. Nature, 1994, 371, 603-606.	27.8	322
11	Exocytosis: A Molecular and Physiological Perspective. Neuron, 1996, 17, 1049-1055.	8.1	311
12	Changes in the statistics of transmitter release during facilitation. Journal of Physiology, 1973, 229, 787-810.	2.9	272
13	Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse Journal of Physiology, 1982, 323, 173-193.	2.9	269
14	Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophysical Journal, 1985, 48, 1003-1017.	0.5	268
15	Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron, 1992, 9, 121-128.	8.1	241
16	Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophysical Journal, 1992, 61, 671-682.	0.5	230
17	Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels. Nature Neuroscience, 2000, 3, 133-141.	14.8	218
18	Postsynaptic Levels of [Ca2+]i Needed to Trigger LTD and LTP. Neuron, 1996, 16, 619-629.	8.1	183

#	Article	IF	CITATIONS
19	Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3032-3036.	7.1	178
20	A General Model of Synaptic Transmission and Short-Term Plasticity. Neuron, 2009, 62, 539-554.	8.1	173
21	Neuronal Circuit Mediating Escape Responses in Crayfish. Science, 1971, 173, 645-650.	12.6	164
22	Mechanisms Determining the Time Course of Secretion in Neuroendocrine Cells. Neuron, 1996, 16, 369-376.	8.1	138
23	Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. Journal of Physiology, 1980, 300, 167-196.	2.9	123
24	Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzhydrol chelators. Biophysical Journal, 1986, 50, 843-853.	0.5	123
25	Mechanism of transmitter release: voltage hypothesis and calcium hypothesis. Science, 1986, 231, 574-579.	12.6	123
26	Calciumâ€dependent inward current in Aplysia bursting paceâ€maker neurones Journal of Physiology, 1985, 362, 107-130.	2.9	121
27	Action potentials must admit calcium to evoke transmitter release. Nature, 1991, 350, 153-155.	27.8	104
28	Characteristics of crayfish neuromuscular facilitation and their calcium dependence. Journal of Physiology, 1974, 241, 91-110.	2.9	100
29	Release of LHRH is linearly related to the time integral of presynaptic Ca+ elevation above a threshold level in bullfrog sympathetic ganglia. Neuron, 1993, 10, 465-473.	8.1	100
30	cAMP Acts on Exchange Protein Activated by cAMP/cAMP-Regulated Guanine Nucleotide Exchange Protein to Regulate Transmitter Release at the Crayfish Neuromuscular Junction. Journal of Neuroscience, 2005, 25, 208-214.	3.6	99
31	Calciumâ€induced inactivation of calcium current causes the interâ€burst hyperpolarization of Aplysia bursting neurones Journal of Physiology, 1985, 362, 131-160.	2.9	98
32	Intracellular calcium release and the mechanisms of parthenogenetic activation of the sea urchin egg. Developmental Biology, 1978, 65, 285-295.	2.0	97
33	Modulation of M-current by intracellular Ca2+. Neuron, 1991, 6, 533-545.	8.1	94
34	Regulation of Synaptic Vesicle Recycling by Calcium and Serotonin. Neuron, 1998, 21, 155-167.	8.1	94
35	Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties. Biophysical Journal, 2004, 86, 2691-2709.	0.5	94
36	Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse Journal of Physiology, 1990, 426, 473-498.	2.9	92

#	Article	IF	CITATIONS
37	Effects of Mobile Buffers on Facilitation: Experimental and Computational Studies. Biophysical Journal, 2000, 78, 2735-2751.	0.5	89
38	Induction of Filopodia by Direct Local Elevation of Intracellular Calcium Ion Concentration. Journal of Cell Biology, 1999, 145, 1265-1276.	5.2	88
39	Phosphorylation and Local Presynaptic Protein Synthesis in Calcium- and Calcineurin-Dependent Induction of Crayfish Long-Term Facilitation. Neuron, 2001, 32, 489-501.	8.1	87
40	Presynaptic Calcium in Transmitter Release and Posttetanic Potentiation. Annals of the New York Academy of Sciences, 1991, 635, 191-207.	3.8	86
41	Crayfish neuromuscular facilitation activated by constant presynaptic action potentials and depolarizing pulses. Journal of Physiology, 1974, 241, 69-89.	2.9	84
42	The calcium concentration clamp: spikes and reversible pulses using the photolabile chelator DM-nitrophen. Cell Calcium, 1993, 14, 87-100.	2.4	83
43	New and Corrected Simulations of Synaptic Facilitation. Biophysical Journal, 2002, 83, 1368-1373.	0.5	83
44	Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators. Journal of Neurophysiology, 1994, 72, 825-830.	1.8	79
45	Membrane potential has no direct role in evoking neurotransmitter release. Nature, 1988, 335, 360-362.	27.8	78
46	Photolytic manipulation of Ca2+ and the time course of slow, Ca(2+)-activated K+ current in rat hippocampal neurones Journal of Physiology, 1994, 475, 229-239.	2.9	78
47	Roles for Mitochondrial and Reverse Mode Na ⁺ /Ca ²⁺ Exchange and the Plasmalemma Ca ²⁺ ATPase in Post-Tetanic Potentiation at Crayfish Neuromuscular Junctions. Journal of Neuroscience, 2001, 21, 9598-9607.	3.6	76
48	Post-tetanic decay of evoked and spontaneous transmitter release and a residual-calcium model of synaptic facilitation at crayfish neuromuscular junctions Journal of General Physiology, 1983, 81, 355-372.	1.9	74
49	Calcium Sensitivity of Neurotransmitter Release Differs at Phasic and Tonic Synapses. Journal of Neuroscience, 2005, 25, 3113-3125.	3.6	73
50	Temporal Synaptic Tagging by Ih Activation and Actin. Neuron, 2002, 33, 601-613.	8.1	69
51	Effects of photolabile calcium chelators on fluorescent calcium indicators. Cell Calcium, 1992, 13, 29-40.	2.4	55
52	"Caged calcium" in Aplysia pacemaker neurons. Characterization of calcium-activated potassium and nonspecific cation currents Journal of General Physiology, 1989, 93, 1017-1060.	1.9	54
53	Spread of Synaptic Depression Mediated by Presynaptic Cytoplasmic Signaling. Science, 1996, 272, 998-1001.	12.6	51
54	Excitability changes in crayfish motor neurone terminals. Journal of Physiology, 1974, 241, 111-126.	2.9	49

#	Article	IF	CITATIONS
55	Long-lasting depression and the depletion hypothesis at crayfish neuromuscular junctions. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1977, 121, 223-240.	1.6	49
56	Tetrathylammonium contains an impurity which alkalizes cytoplasm and reduce calcium buffering in neurons. Brain Research, 1981, 208, 473-478.	2.2	49
57	Asymmetrically Positioned Flagellar Control Units Regulate Human Sperm Rotation. Cell Reports, 2018, 24, 2606-2613.	6.4	47
58	Presynaptic effectors contributing to cAMP-induced synaptic potentiation inDrosophila. Journal of Neurobiology, 2006, 66, 273-280.	3.6	45
59	Photolysisâ€induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons. Journal of Physiology, 2001, 533, 757-763.	2.9	43
60	Long-lasting potentiation and depression without presynaptic activity. Journal of Neurophysiology, 1996, 75, 2157-2160.	1.8	41
61	Theoretical implications of the size principle of motoneurone recruitment. Journal of Theoretical Biology, 1973, 38, 587-596.	1.7	37
62	Postsynaptic Elevation of Calcium Induces Persistent Depression of Developing Neuromuscular Synapses. Neuron, 1996, 16, 745-754.	8.1	37
63	Ca(2+)â€dependent inactivation of Ca2+ current in Aplysia neurons: kinetic studies using photolabile Ca2+ chelators Journal of Physiology, 1993, 464, 501-528.	2.9	33
64	Calcium released by photolysis of DMâ€nitrophen triggers transmitter release at the crayfish neuromuscular junction Journal of Physiology, 1993, 462, 243-260.	2.9	31
65	Minis: Whence and Wherefore?. Neuron, 2005, 45, 482-484.	8.1	31
66	Is synaptic facilitation caused by presynaptic spike broadening?. Nature, 1979, 278, 57-59.	27.8	30
67	Photorelease Techniques for Raising or Lowering Intracellular Ca2+. Methods in Cell Biology, 1994, 40, 31-63.	1.1	29
68	Presynaptic target of Ca 2+ action on neuropeptide and acetylcholine release in Aplysia californica. Journal of Physiology, 2001, 535, 647-662.	2.9	27
69	Dance of the SNAREs: Assembly and Rearrangements Detected with FRET at Neuronal Synapses. Journal of Neuroscience, 2013, 33, 5507-5523.	3.6	26
70	Calcium and transmitter release at nerve terminals. Biochemical Society Transactions, 1993, 21, 395-401.	3.4	25
71	Photolysis of Postsynaptic Caged Ca2+ Can Potentiate and Depress Mossy Fiber Synaptic Responses in Rat Hippocampal CA3 Pyramidal Neurons. Journal of Neurophysiology, 2004, 91, 1596-1607.	1.8	25
72	Field Potentials Generated by Dendritic Spikes and Synaptic Potentials. Science, 1969, 165, 409-413.	12.6	22

#	Article	IF	CITATIONS
73	Roles of Ca2+, Hyperpolarization and Cyclic Nucleotide-Activated Channel Activation, and Actin in Temporal Synaptic Tagging. Journal of Neuroscience, 2004, 24, 4205-4212.	3.6	22
74	Calcium and Short-Term Synaptic Plasticity. Animal Biology, 1993, 44, 495-512.	0.4	20
75	Photorelease Techniques for Raising or Lowering Intracellular Ca2+. Methods in Cell Biology, 2010, 99, 27-66.	1.1	17
76	Calcium Influx Through HCN Channels Does Not Contribute to cAMP-Enhanced Transmission. Journal of Neurophysiology, 2004, 92, 644-647.	1.8	16
77	Calcium activation of the cortical reaction in sea urchin eggs. Nature, 1979, 279, 820-820.	27.8	15
78	Cytoplasmic alkalization reduces calcium buffering in molluscan central neurons. Brain Research, 1981, 225, 155-170.	2.2	15
79	NCS-1 Stirs Somnolent Synapses. Nature Neuroscience, 2003, 6, 1006-1008.	14.8	14
80	The calcium hypothesis and modulation of transmitter release by hyperpolarizing pulses. Biophysical Journal, 1987, 52, 347-350.	0.5	13
81	Activity-Dependent Potentiation of Synaptic Transmission From L30 Inhibitory Interneurons of <i>Aplysia </i> Depends on Residual Presynaptic Ca ²⁺ But Not on Postsynaptic Ca ²⁺ . Journal of Neurophysiology, 1997, 78, 2061-2071.	1.8	13
82	Magnesium Binding to DM-Nitrophen and Its Effect on the Photorelease of Calcium. Biophysical Journal, 1999, 77, 3384-3393.	0.5	13
83	Release of Neurotransmitters. , 2014, , 443-488.		11
84	A Peer Review How-To. Science, 2008, 319, 32-32.	12.6	11
85	Can a Synaptic Signal Arise from Noise?. Neuron, 2003, 38, 845-846.	8.1	10
86	Increased Ca ²⁺ influx through Na ⁺ /Ca ²⁺ exchanger during longâ€ŧerm facilitation at crayfish neuromuscular junctions. Journal of Physiology, 2007, 585, 413-427.	2.9	10
87	Effect of TEA on light emission from aequorin-injected Aplysia central neurons. Brain Research, 1979, 169, 91-102.	2.2	9
88	Cobalt blocks the decrease in MEPSP frequency on depolarization in calcium-free hypertonic media. Journal of Neurobiology, 1986, 17, 707-712.	3.6	8
89	Processes Underlying One Form of Synaptic Plasticity: Facilitation. Advances in Behavioral Biology, 1982, , 249-264.	0.2	8
90	Monensin can transport calcium across cell membranes in a sodium independent fashion in the crayfish Procambarus clarkii. Neuroscience Letters, 1992, 143, 115-118.	2.1	7

#	Article	IF	CITATIONS
91	Frequency Dependent Changes in Excitatory Synaptic Efficacy. , 1988, , 153-167.		7
92	Release of Neurotransmitters. , 2004, , 197-244.		5
93	Synaptic Facilitation and Residual Calcium. , 1985, , 461-475.		5
94	Increased Ca 2+ buffering enhances Ca 2+ â€dependent process. Journal of Physiology, 2001, 531, 583-583.	2.9	4
95	Command neurons: a more precise definition reveals gaps in our evidence and limits to our models. Behavioral and Brain Sciences, 1978, 1, 35-36.	0.7	3
96	Stray light correction for microspectrophotometric determination of intracellular ion concentration. Journal of Neuroscience Methods, 1982, 5, 389-394.	2.5	3
97	Synaptic Plasticity. , 2014, , 533-561.		3
98	Models of Calcium Regulation in Neurons. , 1989, , 403-422.		3
99	The joint peristimulus-time scatter diagram is an index of the operational significance of a synapse. Brain Research, 1973, 53, 458-464.	2.2	2
100	Syntaxin1a Dispersion and Assessment of cis-Snare-Complex Formation-Disassembly during Synaptic Transmission in Hippocampal Neurons. Biophysical Journal, 2010, 98, 679a.	0.5	0
101	Human Sperm Rotation is Regulated by Asymmetrically Positioned Flagellar Control Units. Biophysical	0.5	0