
Aleksander Gwiazda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7691309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recreating the Motion Trajectory of a System of Articulated Rigid Bodies on the Basis of Incomplete Measurement Information and Unsupervised Learning. Sensors, 2022, 22, 2198.	3.8	0
2	Virtual Activating of a Robotized Production Cell with Use of the Mechatronics Concept Designer Module of the PLM Siemens NX System. Advances in Intelligent Systems and Computing, 2019, , 417-425.	0.6	1
3	Integration of Constructional Features Selection and Construction Description. Lecture Notes in Mechanical Engineering, 2019, , 207-214.	0.4	0
4	Animation and Simulation as the Base of Technical Means Systems Verification. Lecture Notes in Mechanical Engineering, 2019, , 199-206.	0.4	0
5	The Properties of Arc-Sprayed Aluminum Coatings on Armor-Grade Steel. Metals, 2018, 8, 142.	2.3	18
6	Multi-agent Meta-model of a Non-cooperative Game in a Virtual Manufacturing Network. Advances in Intelligent Systems and Computing, 2018, , 316-323.	0.6	0
7	Scheduling of an assembly process of a chosen technical mean using the critical chain approach. MATEC Web of Conferences, 2017, 94, 06015.	0.2	2
8	Estimation of the resource buffers in the assembly process of a shearer machine in the CPPM method. MATEC Web of Conferences, 2017, 94, 06012.	0.2	3
9	Robustness of Schedules Obtained Using the Tabu Search Algorithm Based on the Average Slack Method. Advances in Intelligent Systems and Computing, 2017, , 426-434.	0.6	1
10	Application of the Hybrid - Multi Objective Immune Algorithm for Obtaining the Robustness of Schedules. Advances in Intelligent Systems and Computing, 2017, , 445-453.	0.6	0
11	Parameters Tuning of an Immune Algorithm for Time-Series Pattern Recognition to Improve Ability to Escape from a Local Optimum and Achieve a Better Solution. Applied Mechanics and Materials, 2015, 791, 342-349.	0.2	0
12	Optimization of a Constructional Form of Technical Objects Using Advanced Engineering Environment. Applied Mechanics and Materials, 2015, 809-810, 823-828.	0.2	0
13	Designing Complex Technical Means Using the Integrative Approach for Construction Optimization. Applied Mechanics and Materials, 2015, 791, 350-355.	0.2	0
14	Analysis of the Dynamic Properties of the Mechatronic Integrator of Control Procedures of the Vehicle Driven by Persons with Disabilities. Solid State Phenomena, 2015, 220-221, 3-8.	0.3	13
15	Agent-Based Systems Approach for Robotic Workcell Integration. Advanced Materials Research, 2014, 1036, 721-725.	0.3	11
16	Integrated Approach to the Designing Process of Complex Technical Systems. Advanced Materials Research, 2014, 1036, 1023-1027.	0.3	19
17	Construction Development Using Virtual Analysis on the Example of a Roof Support <i></i> . Applied Mechanics and Materials, 2014, 474, 417-422.	0.2	18
18	Design of the Roof Support with Strait-Line Mechanism. Advanced Materials Research, 2014, 1036, 553-558.	0.3	5

ALEKSANDER GWIAZDA

#	Article	IF	CITATIONS
19	Optimization of the Lean Production Process Using the Virtual Manufacturing Cell. Advanced Materials Research, 2014, 1036, 858-863.	0.3	3
20	Virtual Analysis of the Mining Support under Loads of the Roof. Advanced Materials Research, 0, 837, 393-398.	0.3	21
21	Protection of Hydraulic Systems against Dynamic Loads Using Multi-Valve Approach. Advanced Materials Research, 0, 1036, 547-552.	0.3	4
22	Conception of the Integration of the Virtual Robot Model with the Control System. Advanced Materials Research, 0, 1036, 732-736.	0.3	22
23	Model of the e-Manufacturing Environment as the Multi-Agent System. Applied Mechanics and Materials, 0, 657, 854-858.	0.2	15
24	System of Designing Complex Technical Means Using Fuzzy Analysis. Applied Mechanics and Materials, 0, 474, 147-152.	0.2	22
25	Application of the CBR Method for Adding the Design Process of Module Manipulators. Advanced Materials Research, 0, 1036, 1011-1016.	0.3	16
26	Application of the Method Basing on Engineering Knowledge and Experience for Adding the Hexapod Design Process. Advanced Materials Research, 0, 1036, 1005-1010.	0.3	17
27	Application of Functional Features to the Description of Technical Means Conception. Advanced Materials Research, 0, 1036, 1001-1004.	0.3	23
28	Analysis and Optimization of the Piston System Using CAD/CAE Engineering Environment. Applied Mechanics and Materials, 0, 809-810, 1127-1132.	0.2	1
29	Motion Analysis of Mechatronic Equipment Considering the Example of the Stewart Platform. Solid State Phenomena, 0, 220-221, 479-484.	0.3	30
30	Designing Mechatronics Equipment Based on the Example of the Stewart Platform. Solid State Phenomena, 0, 220-221, 419-422.	0.3	16