Marzieh Piryaei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7691228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of a metal–organic framework confined in periodic mesoporous silica with enhanced hydrostability as a novel fiber coating for solidâ€phase microextraction. Journal of Separation Science, 2015, 38, 1187-1193.	1.3	48
2	Deep eutectic solvents as extraction phase in head-space single-drop microextraction for determination of pesticides in fruit juice and vegetable samples. Microchemical Journal, 2020, 158, 105041.	2.3	47
3	Anodized aluminum wire as a solid-phase microextraction fiber for rapid determination of volatile constituents in medicinal plant. Analytica Chimica Acta, 2011, 701, 1-5.	2.6	43
4	Synthesis of carbon nanotube/layered double hydroxide nanocomposite as a novel fiber coating for the headspace solidâ€phase microextraction of phenols from water samples. Journal of Separation Science, 2015, 38, 1344-1350.	1.3	33
5	Preparation of a novel green optical pH sensor based on immobilization of red grape extract on bioorganic agarose membrane. Sensors and Actuators B: Chemical, 2016, 224, 391-395.	4.0	33
6	Fabrication of a hierarchical dodecyl sulfate-layered double hydroxide nanocomposite on porous aluminum wire as an efficient coating for solid-phase microextraction of phenols. Mikrochimica Acta, 2015, 182, 1177-1186.	2.5	30
7	Analysis of volatile oil composition of <i><scp>C</scp>itrus aurantium</i> <scp>L</scp> . by microwaveâ€assisted extraction coupled to headspace solidâ€phase microextraction with nanoporous based fibers. Journal of Separation Science, 2013, 36, 872-877.	1.3	28
8	Double-charged ionic liquid-functionalized layered double hydroxide nanomaterial as a new fiber coating for solid-phase microextraction of phenols. Mikrochimica Acta, 2015, 182, 2155-2164.	2.5	23
9	Rapid Analysis of Volatile Components from <i>Teucrium polium</i> L. by Nanoporous Silicaâ€polyaniline Solid Phase Microextraction Fibre. Phytochemical Analysis, 2013, 24, 69-74.	1.2	22
10	Fabrication of polyanilineâ€coated halloysite nanotubes by in situ chemical polymerization as a solidâ€phase microextraction coating for the analysis of volatile organic compounds in aqueous solutions. Journal of Separation Science, 2016, 39, 956-963.	1.3	22
11	Microwave distillation followed by headspace single drop microextraction coupled to gas chromatography-mass spectrometry (GC–MS) for fast analysis of volatile components of Echinophora platyloba DC. Food Chemistry, 2013, 138, 251-255.	4.2	21
12	A star-shaped polythiophene dendrimer coating for solid-phase microextraction of triazole agrochemicals. Mikrochimica Acta, 2018, 185, 179.	2.5	20
13	Polyoxometalate-based ionic liquid coating for solid phase microextraction of triazole pesticides in water samples. Separation Science and Technology, 2019, 54, 1553-1559.	1.3	17
14	Bio template route for fabrication of a hybrid material composed of hierarchical boehmite, layered double hydroxides (Mg-Al) and porous carbon on a steel fiber for solid phase microextraction of agrochemicals. Mikrochimica Acta, 2019, 186, 678.	2.5	16
15	Fast determination of <i>Ziziphora tenuior</i> L. essential oil by inorganic–organic hybrid material based on ZnO nanoparticles anchored to a composite made from polythiophene and hexagonally ordered silica. Natural Product Research, 2015, 29, 833-837.	1.0	13
16	Ionic liquid-derived nano-fibrillated mesoporous carbon based on solid-phase microextraction fiber for the analysis of volatile organic compounds from aqueous solutions. New Journal of Chemistry, 2015, 39, 6085-6091.	1.4	12
17	Determination and analysis of volatile components from <i>Thymus kotschyanus</i> Boiss with a new solidâ€phase microextraction fibre and microwaveâ€assisted hydrodistillation by periodic mesoporous organosilica based on alkylimidazolium ionic liquid. Phytochemical Analysis, 2019, 30, 193-197.	1.2	10
18	Antioxidant activity of Ziziphora tenuoir methanolic extracts and comparison of the essential oil in two stages of growth. Chinese Journal of Natural Medicines, 2014, 12, 505-511.	0.7	9

Marzieh Piryaei

#	Article	IF	CITATIONS
19	Rapid analysis of <i>Achillea tenuifolia Lam</i> essential oils by polythiophene/hexagonally ordered silica nanocomposite coating as a solid-phase microextraction fibre. Natural Product Research, 2015, 29, 1789-1792.	1.0	9
20	Comparison of microwave-assisted headspace single-drop microextraction (MA-HS-SDME) with hydrodistillation for the determination of volatile compounds fromPrangos uloptera. Journal of Essential Oil Research, 2013, 25, 49-54.	1.3	8
21	A method for fast analysis of volatile components of <i>Citrus aurantium</i> L. leaves. Natural Product Research, 2013, 27, 1315-1318.	1.0	8
22	Layered double hydroxide films on nanoporous anodic aluminum oxide/aluminum wire: a new fiber for rapid analysis of <i>Origanum vulgare</i> essential oils. Natural Product Research, 2018, 32, 243-245.	1.0	8
23	Fast analysis of volatile components of <i>Achillea tenuifolia</i> Lam with microwave distillation followed by headspace single-drop microextraction coupled to gas chromatography-mass spectrometry (GC–MS). Natural Product Research, 2016, 30, 991-994.	1.0	6
24	Carbon nanotube/layered double hydroxide nanocomposite as a fibre coating for determination the essential oils of Achillea eriophora DC with the headspace solid-phase microextraction. Natural Product Research, 2021, 35, 1217-1220.	1.0	5
25	Evaluation effect of microwave irradiation on the amount of volatile compounds, monoterpenes and sesquiterpenoids from <i>Thymus kotschyanus</i> Boiss with four methods. Natural Product Research, 2013, 27, 1228-1231.	1.0	4
26	The use of the headspace single drop microextraction and microwave distillation for determination of essential oil components of Salvia hydrangea DC. Natural Product Research, 2020, 34, 2996-2999.	1.0	4
27	Development of direct microwave desorption/gas chromatography mass spectrometry system for rapid analysis of volatile components in medicinal plants. Journal of Separation Science, 2020, 43, 782-787.	1.3	4
28	Determination of essential oils composition of blanket-leaf (Stachys byzantina C. Koch.) by microwave assisted extraction coupled to headspace single-drop microextraction. Natural Product Research, 2018, 32, 2621-2624.	1.0	3
29	Direct thermal desorption technique as a very fast, easy andÂlowâ€cost method for analysis of volatile components compounds by gas chromatography with mass spectrometry. Separation Science Plus, 2019, 2, 416-421.	0.3	3
30	Hexagonal Ordered Mesoporous Silica-Coated by Polypyrrole as a Coating for Inside Needle Capillary Adsorption Trap of Polycyclic Aromatic Hydrocarbons. Polycyclic Aromatic Compounds, 2022, 42, 2834-2842.	1.4	3
31	Preconcentration of digoxin using a synthetic imprinted polymer deposited upon the surface of doubleâ€layered hydroxides on porous anodised aluminium wire a triple solidâ€phase microextraction fibre. Phytochemical Analysis, 2020, 31, 636-642.	1.2	3
32	Synthesis of Ni–Ti Three-Dimensional Layered Double Hydroxide on the Surface of Graphene Oxide for Analysis of the Volatile Compounds. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 875-883.	0.7	3
33	Head space solid phase microextraction of 15 pesticides in water samples using MnO2 nanowires decorate on graphenized pencil lead fiber. Separation Science and Technology, 2022, 57, 419-425.	1.3	3
34	Determination of Polycyclic Aromatic Hydrocarbons by Coated Vial Solid-Phase Microextraction Followed by HPLC. Polycyclic Aromatic Compounds, 2023, 43, 317-327.	1.4	3
35	Hierarchically Synthesis of Nanoflower Layered Double Hydroxide/Molybdenum Disulfide on Electrochemically Anodized HB Pencil Lead for Determination Trace Amounts of Polycyclic Aromatic Hydrocarbons. Polycyclic Aromatic Compounds, 2022, 42, 4078-4085.	1.4	2
36	Immobilization Polyoxometalate/Ionic Liquid Nanocomposites on Hexagonally Ordered Silica as Solid Coating in Microextraction of Polycyclic Aromatic Hydrocarbons. Polycyclic Aromatic Compounds, 2022, 42, 4644-4650.	1.4	2

#	Article	IF	CITATIONS
37	Fast analysis of volatile compounds from <i>Lippia citriodora</i> with nanoporous aluminum wire as solid-phase microextraction fibres. Natural Product Research, 2017, 31, 351-354.	1.0	1
38	Molecularly Imprinted Polymer-Coated Vial Solid-Phase Microextraction as a Selective and Manual Method for Determination of Bisphenol a in Mineral and River Water Samples. Polycyclic Aromatic Compounds, 0, , 1-9.	1.4	1
39	The New Simple and Manual Coated Serum Vial Solid-Phase Microextraction Method for Pre-Concentration of Polycyclic Aromatic Hydrocarbons in Water Samples. Polycyclic Aromatic Compounds, 2022, 42, 7247-7255.	1.4	1
40	Binder-Free Decorated Cu Cluster-Based Metal-Organic Framework on Copper Film for Thin-Film Microextraction of Polycyclic Aromatic Hydrocarbons Followed by High-Performance Liquid Chromatography-Photo Diode Array Detection. Polycyclic Aromatic Compounds, 0, , 1-9.	1.4	1