
Antonio Leyva-Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7690349/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parts-Per-Million of Soluble Pd ⁰ Catalyze the Semi-Hydrogenation Reaction of Alkynes to Alkenes. Journal of Organic Chemistry, 2023, 88, 18-26.	3.2	12
2	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	18.8	70
3	MOFâ€Stabilized Perfluorinated Palladium Cages Catalyze the Additiveâ€Free Aerobic Oxidation of Aliphatic Alcohols to Acids. Chemistry - A European Journal, 2022, 28, .	3.3	6
4	Epoxidation vs. dehydrogenation of allylic alcohols: Heterogenization of the VO(acac)2 catalyst in a metal-organic framework. Chemical Communications, 2022, , .	4.1	2
5	Selective semi-hydrogenation of internal alkynes catalyzed by Pd–CaCO3 clusters. Journal of Catalysis, 2022, 408, 43-55.	6.2	29
6	Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic frameworks (M–MOFs). Molecular Catalysis, 2022, 522, 112228.	2.0	0
7	Parts–per–million of ruthenium catalyze the selective chain–walking reaction of terminal alkenes. Nature Communications, 2022, 13, .	12.8	8
8	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	11.2	14
9	Solid–catalyzed esterification reaction of long–chain acids and alcohols in fixed–bed reactors at pilot plant scale. Chemical Engineering and Processing: Process Intensification, 2022, 178, 109038.	3.6	2
10	Crystallographic Visualization of a Double Water Molecule Addition on a Pt 1 â€MOF during the Lowâ€ŧemperature Waterâ€Gas Shift Reaction. ChemCatChem, 2021, 13, 1195-1200.	3.7	7
11	Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids. Journal of the American Chemical Society, 2021, 143, 2581-2592.	13.7	74
12	Radical α–alkylation of ketones with unactivated alkenes under catalytic and sustainable industrial conditions. Applied Catalysis A: General, 2021, 613, 118021.	4.3	9
13	Regioirregular and catalytic Mizoroki–Heck reactions. Nature Catalysis, 2021, 4, 293-303.	34.4	42
14	Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. Jacs Au, 2021, 1, 786-794.	7.9	12
15	Nanotitania catalyzes the chemoselective hydration and alkoxylation of epoxides. Molecular Catalysis, 2021, 515, 111927.	2.0	5
16	Zeolites catalyze selective reactions of large organic molecules. Advances in Catalysis, 2021, 69, 59-102.	0.2	0
17	Intermolecular Carbonyl–olefin Metathesis with Vinyl Ethers Catalyzed by Homogeneous and Solid Acids in Flow. Angewandte Chemie, 2020, 132, 3874-3877.	2.0	7
18	Intermolecular Carbonyl–olefin Metathesis with Vinyl Ethers Catalyzed by Homogeneous and Solid Acids in Flow. Angewandte Chemie - International Edition, 2020, 59, 3846-3849.	13.8	30

Antonio Leyva-Pérez

#	Article	IF	CITATIONS
19	Nanoceria as a recyclable catalyst/support for the cyanosilylation of ketones and alcohol oxidation in cascade. Journal of Catalysis, 2020, 392, 21-28.	6.2	9
20	Cyclic metal(oid) clusters control platinum-catalysed hydrosilylation reactions: from soluble to zeolite and MOF catalysts. Chemical Science, 2020, 11, 8113-8124.	7.4	20
21	Zeolites Catalyze the Nazarov Reaction and the tert-Butylation of Alcohols by Stabilization of Carboxonium Intermediates. Synthesis, 2020, 52, 2031-2037.	2.3	3
22	Hydrolase–like catalysis and structural resolution of natural products by a metal–organic framework. Nature Communications, 2020, 11, 3080.	12.8	33
23	Fewâ€layer Black Phosphorous Catalyzes Radical Additions to Alkenes Faster than Lowâ€valence Metals. ChemCatChem, 2020, 12, 2226-2232.	3.7	14
24	Metal–Organic Frameworks as Chemical Nanoreactors: Synthesis and Stabilization of Catalytically Active Metal Species in Confined Spaces. Accounts of Chemical Research, 2020, 53, 520-531.	15.6	81
25	Ligand-Free Sub-Nanometer Metal Clusters in Catalysis. Molecular Catalysis, 2020, , 1-37.	1.3	Ο
26	Gitteröffnung durch reduktive kovalente Volumenâ€Funktionalisierung von schwarzem Phosphor. Angewandte Chemie, 2019, 131, 5820-5826.	2.0	12
27	Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus. Angewandte Chemie - International Edition, 2019, 58, 5763-5768.	13.8	60
28	Self-Assembly of Catalytically Active Supramolecular Coordination Compounds within Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10350-10360.	13.7	50
29	Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters. Nature Communications, 2019, 10, 509.	12.8	61
30	Base-Controlled Heck, Suzuki, and Sonogashira Reactions Catalyzed by Ligand-Free Platinum or Palladium Single Atom and Sub-Nanometer Clusters. Journal of the American Chemical Society, 2019, 141, 1928-1940.	13.7	107
31	Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. Journal of the American Chemical Society, 2018, 140, 3215-3218.	13.7	39
32	Synthesis of Densely Packaged, Ultrasmall Pt ⁰ ₂ Clusters within a Thioetherâ€Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature. Angewandte Chemie, 2018, 130, 6294-6299.	2.0	22
33	Synthesis of Densely Packaged, Ultrasmall Pt ⁰ ₂ Clusters within a Thioetherâ€Functionalized MOF: Catalytic Activity in Industrial Reactions at Low Temperature. Angewandte Chemie - International Edition, 2018, 57, 6186-6191.	13.8	115
34	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Lowâ€Temperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie - International Edition, 2018, 57, 17094-17099.	13.8	54
35	Confined Pt ₁ ¹⁺ Water Clusters in a MOF Catalyze the Lowâ€Temperature Water–Gas Shift Reaction with both CO ₂ Oxygen Atoms Coming from Water. Angewandte Chemie, 2018, 130, 17340-17345.	2.0	4
36	Stabilized Ru[(H ₂ 0) ₆] ³⁺ in Confined Spaces (MOFs and Zeolites) Catalyzes the Imination of Primary Alcohols under Atmospheric Conditions with Wide Scope. ACS Catalysis, 2018, 8, 10401-10406.	11.2	31

#	Article	IF	CITATIONS
37	Isolated Fe(III)–O Sites Catalyze the Hydrogenation of Acetylene in Ethylene Flows under Front-End Industrial Conditions. Journal of the American Chemical Society, 2018, 140, 8827-8832.	13.7	74
38	Partial Reduction and Selective Transfer of Hydrogen Chloride on Catalytic Gold Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 6435-6439.	13.8	58
39	Synthesis of Supported Planar Iron Oxide Nanoparticles and Their Chemo- and Stereoselectivity for Hydrogenation of Alkynes. ACS Catalysis, 2017, 7, 3721-3729.	11.2	63
40	Partial Reduction and Selective Transfer of Hydrogen Chloride on Catalytic Gold Nanoparticles. Angewandte Chemie, 2017, 129, 6535-6539.	2.0	10
41	A Ligandâ€Free Pt ₃ Cluster Catalyzes the Markovnikov Hydrosilylation of Alkynes with up to 10 ⁶ Turnover Frequencies. Chemistry - A European Journal, 2017, 23, 1702-1708.	3.3	45
42	The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 2017, 16, 760-766.	27.5	230
43	Disassembling Metal Nanocrystallites into Subâ€nanometric Clusters and Lowâ€faceted Nanoparticles for Multisite Catalytic Reactions. ChemCatChem, 2017, 9, 1429-1435.	3.7	8
44	The wet synthesis and quantification of ligand-free sub-nanometric Au clusters in solid matrices. Chemical Communications, 2017, 53, 1116-1119.	4.1	13
45	Sub-nanometre metal clusters for catalytic carbon–carbon and carbon–heteroatom cross-coupling reactions. Dalton Transactions, 2017, 46, 15987-15990.	3.3	15
46	Bimetallic nanosized solids with acid and redox properties for catalytic activation of C–C and C–H bonds. Chemical Science, 2017, 8, 689-696.	7.4	18
47	Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 7864-7867.	13.7	196
48	Facile Synthesis of Surface-Clean Monodispersed CuOx Nanoparticles and Their Catalytic Properties for Oxidative Coupling of Alkynes. ACS Catalysis, 2016, 6, 2211-2221.	11.2	38
49	Stabilized Naked Sub-nanometric Cu Clusters within a Polymeric Film Catalyze C–N, C–C, C–O, C–S, and C–P Bond-Forming Reactions. Journal of the American Chemical Society, 2015, 137, 3894-3900.	13.7	71
50	Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie - International Edition, 2015, 54, 5658-5661.	13.8	39
51	Unique distal size selectivity with a digold catalyst during alkyne homocoupling. Nature Communications, 2015, 6, 6703.	12.8	51
52	Well-Defined Noble Metal Single Sites in Zeolites as an Alternative to Catalysis by Insoluble Metal Salts. Journal of the American Chemical Society, 2015, 137, 11832-11837.	13.7	66
53	Partially oxidized gold nanoparticles: A catalytic base-free system for the aerobic homocoupling of alkynes. Journal of Catalysis, 2014, 315, 6-14.	6.2	30
54	One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst. Chemical Communications, 2014, 50, 1645-1647.	4.1	21

#	Article	IF	CITATIONS
55	Synthesis of the <i>ortho</i> / <i>meta</i> / <i>para</i> Isomers of Relevant Pharmaceutical Compounds by Coupling a Sonogashira Reaction with a Regioselective Hydration. ACS Catalysis, 2014, 4, 722-731.	11.2	30
56	Multisite Organic–Inorganic Hybrid Catalysts for the Direct Sustainable Synthesis of GABAergic Drugs. Angewandte Chemie - International Edition, 2014, 53, 8687-8690.	13.8	43
57	Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters: Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold. Accounts of Chemical Research, 2014, 47, 834-844.	15.6	210
58	Formation and stability of 3–5 atom gold clusters from gold complexes during the catalytic reaction: dependence on ligands and counteranions. Chemical Communications, 2013, 49, 7782.	4.1	29
59	Reactivity of Electron-Deficient Alkynes on Gold Nanoparticles. ACS Catalysis, 2013, 3, 1865-1873.	11.2	42
60	Very Small (3–6 Atoms) Gold Cluster Catalyzed Carbon–Carbon and Carbon–Heteroatom Bondâ€Forming Reactions in Solution. ChemCatChem, 2013, 5, 3509-3515.	3.7	43
61	A bifunctional palladium/acid solid catalyst performs the direct synthesis of cyclohexylanilines and dicyclohexylamines from nitrobenzenes. Chemical Communications, 2013, 49, 8160.	4.1	27
62	Waterâ€Stabilized Three―and Fourâ€Atom Palladium Clusters as Highly Active Catalytic Species in Ligandâ€Free CC Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2013, 52, 11554-11559.	13.8	123
63	MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MILâ€101. ChemCatChem, 2013, 5, 538-549.	3.7	117
64	Oxyhalogenation of Activated Arenes with Nanocrystalline Ceria. ACS Catalysis, 2013, 3, 250-258.	11.2	32
65	Iron(III) Triflimide as a Catalytic Substitute for Gold(I) in Hydroaddition Reactions to Unsaturated Carbon–Carbon Bonds. Chemistry - A European Journal, 2013, 19, 8627-8633.	3.3	34
66	Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 10 ⁷ at Room Temperature. Science, 2012, 338, 1452-1455.	12.6	383
67	Gold Redox Catalytic Cycles for the Oxidative Coupling of Alkynes. ACS Catalysis, 2012, 2, 121-126.	11.2	82
68	Ironâ€Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis and Catalysis, 2012, 354, 678-687.	4.3	65
69	Regioselective Hydration of Alkynes by Iron(III) Lewis/BrÃ,nsted Catalysis. Chemistry - A European Journal, 2012, 18, 11107-11114.	3.3	80
70	Electrochemical monitoring of the oxidative coupling of alkynes catalyzed by triphenylphosphine gold complexes. Electrochemistry Communications, 2012, 19, 145-148.	4.7	11
71	Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today, 2012, 7, 21-28.	11.9	120
72	Similarities and Differences between the "Relativistic―Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie - International Edition, 2012, 51, 614-635.	13.8	184

#	Article	IF	CITATIONS
73	Cationic Gold Catalyzes ω-Bromination of Terminal Alkynes and Subsequent Hydroaddition Reactions. ACS Catalysis, 2011, 1, 601-606.	11.2	34
74	Gold-Catalyzed Carbonâ^'Heteroatom Bond-Forming Reactions. Chemical Reviews, 2011, 111, 1657-1712.	47.7	1,222
75	Synthesis of Organicâ^'Inorganic Hybrid Solids with Copper Complex Framework and Their Catalytic Activity for the S-Arylation and the Azideâ^'Alkyne Cycloaddition Reactions. ACS Catalysis, 2011, 1, 147-158.	11.2	37
76	Total Synthesis of Iso―and Bongkrekic Acids: Natural Antibiotics Displaying Potent Antiapoptotic Properties. Chemistry - A European Journal, 2011, 17, 329-343.	3.3	29
77	Copper(I)-catalyzed hydrophosphination of styrenes. Journal of Organometallic Chemistry, 2011, 696, 362-367.	1.8	41
78	Bifunctional solid catalysts for chemoselective hydrogenation–cyclisation–amination cascade reactions of relevance for the synthesis of pharmaceuticals. Tetrahedron, 2010, 66, 8203-8209.	1.9	33
79	Regio―and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis and Catalysis, 2010, 352, 1701-1710.	4.3	67
80	Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces α,α′, <i>N</i> -Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. Journal of Organic Chemistry, 2010, 75, 7769-7780.	3.2	48
81	Ironâ€Catalysed Regio―and Stereoselective Headâ€toâ€Tail Dimerisation of Styrenes. Advanced Synthesis and Catalysis, 2010, 352, 1571-1576.	4.3	46
82	Gold catalysts and solid catalysts for biomass transformations: Valorization of glycerol and glycerol–water mixtures through formation of cyclic acetals. Journal of Catalysis, 2010, 271, 351-357.	6.2	81
83	Total Synthesis of the Anti-Apoptotic Agents Iso- and Bongkrekic Acids. Organic Letters, 2010, 12, 340-343.	4.6	90
84	Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis and Catalysis, 2009, 351, 2876-2886.	4.3	61
85	Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. Journal of Organic Chemistry, 2009, 74, 2067-2074.	3.2	215
86	Chemoselective hydroboration of alkynes vs. alkenes over gold catalysts. Chemical Communications, 2009, , 4947.	4.1	48
87	Functionalised butanediacetal-protected 1,2-diols as suitable partners for Pd-catalysed cross-coupling reactions. Tetrahedron, 2008, 64, 2348-2358.	1.9	10
88	A new synthesis of (â^')-epipyriculol: a phytotoxic metabolite. Tetrahedron, 2008, 64, 4711-4717.	1.9	13
89	A soluble polyethyleneglycol-anchored phosphine as a highly active, reusable ligand for Pd-catalyzed couplings of aryl chlorides: comparison with cross and non-cross-linked polystyrene and silica supports. Tetrahedron, 2007, 63, 7097-7111.	1.9	55
90	Electrochemiluminescence of a Periodic Mesoporous Organosilica Containing 9,10-Diarylanthracene Units. Journal of Physical Chemistry C, 2007, 111, 7532-7538.	3.1	26

Antonio Leyva-Pérez

#	Article	IF	CITATIONS
91	Polyethyleneglycol as scaffold and solvent for reusable CC coupling homogeneous Pd catalysts. Journal of Catalysis, 2006, 240, 87-99.	6.2	119
92	Palladium catalyzed cycloisomerization of 2,2-diallylmalonates in imidazolium ionic liquids. Journal of Organometallic Chemistry, 2005, 690, 3529-3534.	1.8	14
93	Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon. Journal of Molecular Catalysis A, 2005, 230, 97-105.	4.8	192
94	Ship-in-a-bottle synthesis of triphenylamine inside faujasite supercages and generation of the triphenylamminium radical ion. Tetrahedron, 2005, 61, 791-796.	1.9	14
95	Comparison between polyethylenglycol and imidazolium ionic liquids as solvents for developing a homogeneous and reusable palladium catalytic system for the Suzuki and Sonogashira coupling. Tetrahedron, 2005, 61, 9848-9854.	1.9	101
96	A periodic mesoporous organosilica containing a carbapalladacycle complex as heterogeneous catalyst for Suzuki cross-coupling. Journal of Catalysis, 2005, 229, 322-331.	6.2	168
97	A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 2005, 15, 1742.	6.7	39
98	Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalysed reactions Case of Knoevenagel and Claisen–Schmidt reactions. Journal of Molecular Catalysis A, 2004, 214, 137-142.	4.8	80
99	Alkali-exchanged sepiolites containing palladium as bifunctional (basic sites and noble metal) catalysts for the Heck and Suzuki reactions. Applied Catalysis A: General, 2004, 257, 77-83.	4.3	83
100	Supercritical CO2 as a superior solvent for the cyclization of diallylmalonate catalyzed by palladium-containing zeolites. Tetrahedron, 2004, 60, 8131-8135.	1.9	7
101	An imidazolium ionic liquid having covalently attached an oxime carbapalladacycle complex as ionophilic heterogeneous catalysts for the Heck and Suzuki–Miyaura cross-coupling. Tetrahedron, 2004, 60, 8553-8560.	1.9	94
102	Controlling the softness?hardness of Pd by strong metal?zeolite interaction: cyclisation of diallylmalonate as a test reaction. Journal of Catalysis, 2004, 225, 350-358.	6.2	14
103	Preparation and photochemical properties of p-phenylene oligomers encapsulated within faujasite Y. Physical Chemistry Chemical Physics, 2004, 6, 201-204.	2.8	6
104	Oxime Carbapalladacycle Covalently Anchored to High Surface Area Inorganic Supports or Polymers as Heterogeneous Green Catalysts for the Suzuki Reaction in Water. Journal of Organic Chemistry, 2004, 69, 439-446.	3.2	203
105	Basic zeolites containing palladium as bifunctional heterogeneous catalysts for the Heck reaction. Applied Catalysis A: General, 2003, 247, 41-49.	4.3	83
106	An oxime–carbapalladacycle complex covalently anchored to silica as an active and reusable heterogeneous catalyst for Suzuki cross-coupling in water. Chemical Communications, 2003, , 606-607.	4.1	143
107	Heterogeneous Baylis–Hillman using a polystyrene-bound 4-(N-benzyl-N-methylamino)pyridine as reusable catalyst. Chemical Communications, 2003, , 2806-2807.	4.1	42
108	Bifunctional palladium-basic zeolites as catalyst for Suzuki reaction. Applied Catalysis A: General, 2002, 236, 179-185.	4.3	88

#	Article	IF	CITATIONS
109	Ligand-free subnanometre gold metal clusters and their applications. Catalysis, 0, , 21-40.	1.0	2