
Akhil B Vaidya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7690336/publications.pdf Version: 2024-02-01

Δεμίι Β. Μλισυλ

#	Article	IF	CITATIONS
1	Metabolic adjustments of blood-stage Plasmodium falciparum in response to sublethal pyrazoleamide exposure. Scientific Reports, 2022, 12, 1167.	3.3	8
2	Dramatic Consequences of Reducing Erythrocyte Membrane Cholesterol on Plasmodium falciparum. Microbiology Spectrum, 2022, 10, e0015822.	3.0	7
3	Structural Analysis of the Interaction of Pyrazole and Benzimidazole Core Compounds with PfATP4. FASEB Journal, 2022, 36, .	0.5	0
4	Atypical Molecular Basis for Drug Resistance to Mitochondrial Function Inhibitors in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	7
5	Associations between Varied Susceptibilities to PfATP4 Inhibitors and Genotypes in Ugandan Plasmodium falciparum Isolates. Antimicrobial Agents and Chemotherapy, 2021, 65, e0077121.	3.2	2
6	Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS ONE, 2019, 14, e0214023.	2.5	29
7	Diverse Chemical Compounds Target <i>Plasmodium falciparum</i> Plasma Membrane Lipid Homeostasis. ACS Infectious Diseases, 2019, 5, 550-558.	3.8	16
8	Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. ELife, 2019, 8, .	6.0	51
9	The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in Plasmodium falciparum. Journal of Biological Chemistry, 2018, 293, 8128-8137.	3.4	50
10	Reflections on an inflection: From virology to parasitology guided by POLARIS. PLoS Pathogens, 2018, 14, e1006941.	4.7	0
11	Alkoxycarbonate Ester Prodrugs of Preclinical Drug Candidate ELQ-300 for Prophylaxis and Treatment of Malaria. ACS Infectious Diseases, 2017, 3, 728-735.	3.8	38
12	Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell, 2017, 170, 260-272.e8.	28.9	471
13	Caged Garcinia Xanthones, a Novel Chemical Scaffold with Potent Antimalarial Activity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	15
14	Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum. PLoS Pathogens, 2016, 12, e1005647.	4.7	40
15	Antiparasitic and disease-modifying activity of Nyctanthes arbor-tristis Linn. in malaria: An exploratory clinical study. Journal of Ayurveda and Integrative Medicine, 2016, 7, 238-248.	1.7	8
16	Atovaquone and ELQ-300 Combination Therapy as a Novel Dual-Site Cytochrome <i>bc</i> ₁ Inhibition Strategy for Malaria. Antimicrobial Agents and Chemotherapy, 2016, 60, 4853-4859.	3.2	50
17	Maduramicin Rapidly Eliminates Malaria Parasites and Potentiates the Gametocytocidal Activity of the Pyrazoleamide PA21A050. Antimicrobial Agents and Chemotherapy, 2016, 60, 1492-1499.	3.2	23
18	Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p. PLoS ONE, 2016, 11, e0152197.	2.5	6

#	Article	IF	CITATIONS
19	Host Erythrocyte Environment Influences the Localization of Exported Protein 2, an Essential Component of the Plasmodium Translocon. Eukaryotic Cell, 2015, 14, 371-384.	3.4	18
20	ELQ-300 Prodrugs for Enhanced Delivery and Single-Dose Cure of Malaria. Antimicrobial Agents and Chemotherapy, 2015, 59, 5555-5560.	3.2	62
21	Inhibition of Cytochrome bc 1 as a Strategy for Single-Dose, Multi-Stage Antimalarial Therapy. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1195-1201.	1.4	34
22	Subtle Changes in Endochin-Like Quinolone Structure Alter the Site of Inhibition within the Cytochrome <i>bc</i> ₁ Complex of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2015, 59, 1977-1982.	3.2	61
23	Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle. Cell Reports, 2015, 11, 164-174.	6.4	134
24	Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nature Communications, 2014, 5, 5521.	12.8	108
25	The Heme Biosynthesis Pathway Is Essential for Plasmodium falciparum Development in Mosquito Stage but Not in Blood Stages. Journal of Biological Chemistry, 2014, 289, 34827-34837.	3.4	133
26	Discovery, Synthesis, and Optimization of Antimalarial 4(1 <i>H</i>)-Quinolone-3-Diarylethers. Journal of Medicinal Chemistry, 2014, 57, 3818-3834.	6.4	100
27	The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp Current Opinion in Microbiology, 2013, 16, 452-458.	5.1	102
28	Quinolone-3-Diarylethers: A New Class of Antimalarial Drug. Science Translational Medicine, 2013, 5, 177ra37.	12.4	187
29	The Antimalarial Activities of Methylene Blue and the 1,4-Naphthoquinone 3-[4-(Trifluoromethyl)Benzyl]-Menadione Are Not Due to Inhibition of the Mitochondrial Electron Transport Chain. Antimicrobial Agents and Chemotherapy, 2013, 57, 2114-2120.	3.2	34
30	Mitochondrial RNA polymerase is an essential enzyme in erythrocytic stages of Plasmodium falciparum. Molecular and Biochemical Parasitology, 2012, 185, 48-51.	1.1	10
31	Variation among Plasmodium falciparum Strains in Their Reliance on Mitochondrial Electron Transport Chain Function. Eukaryotic Cell, 2011, 10, 1053-1061.	3.4	59
32	A Chemical Genomic Analysis of Decoquinate, a <i>Plasmodium falciparum</i> Cytochrome <i>b</i> Inhibitor. ACS Chemical Biology, 2011, 6, 1214-1222.	3.4	84
33	Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection. Molecular and Biochemical Parasitology, 2011, 177, 29-34.	1.1	94
34	ATP Synthase Complex of Plasmodium falciparum. Journal of Biological Chemistry, 2011, 286, 41312-41322.	3.4	69
35	Hemozoin-free Plasmodium falciparum mitochondria for physiological and drug susceptibility studies. Molecular and Biochemical Parasitology, 2010, 174, 150-153.	1.1	27
36	Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature, 2010, 466, 774-778.	27.8	111

#	Article	IF	CITATIONS
37	Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila. PLoS Biology, 2010, 8, e1000418.	5.6	72
38	Mitochondrial Electron Transport Inhibition and Viability of Intraerythrocytic <i>Plasmodium falciparum</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 5281-5287.	3.2	53
39	Structure-based Design of Novel Small-Molecule Inhibitors of Plasmodium falciparum. Journal of Chemical Information and Modeling, 2010, 50, 840-849.	5.4	49
40	Complex inheritance of the plasmodial surface anion channel in a <i>Plasmodium falciparum</i> genetic cross. Molecular Microbiology, 2009, 72, 459-469.	2.5	24
41	Host-Parasite Interactions Revealed by Plasmodium falciparum Metabolomics. Cell Host and Microbe, 2009, 5, 191-199.	11.0	290
42	Mitochondrial Evolution and Functions in Malaria Parasites. Annual Review of Microbiology, 2009, 63, 249-267.	7.3	207
43	Mitochondria in malaria and related parasites: ancient, diverse and streamlined. Journal of Bioenergetics and Biomembranes, 2008, 40, 425-33.	2.3	47
44	The validity of mitochondrial dehydrogenases as antimalarial drug targets. Trends in Parasitology, 2008, 24, 8-9.	3.3	25
45	Mitochondrial Drug Targets in Apicomplexan Parasites. Current Drug Targets, 2007, 8, 49-60.	2.1	100
46	Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature, 2007, 446, 88-91.	27.8	441
47	Structure of the MTIP-MyoA complex, a key component of the malaria parasite invasion motor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4852-4857.	7.1	67
48	Plasmodium vivax Malaria in Spite of Atovaquone/Proguanil (Malarone) Prophylaxis. Journal of Travel Medicine, 2006, 10, 353-355.	3.0	22
49	Alteration in Host Cell Tropism Limits the Efficacy of Immunization with a Surface Protein of Malaria Merozoites. Infection and Immunity, 2005, 73, 6363-6371.	2.2	21
50	Uncovering the Molecular Mode of Action of the Antimalarial Drug Atovaquone Using a Bacterial System. Journal of Biological Chemistry, 2005, 280, 27458-27465.	3.4	83
51	Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16813-16818.	7.1	73
52	Plasmodium DNA Fluoresces With Berberine: A Novel Approach for Diagnosis of Malarial Parasites. American Journal of Clinical Pathology, 2005, 124, 408-412.	0.7	7
53	Mitochondrial and Plastid Functions as Antimalarial Drug Targets. Current Drug Targets Infectious Disorders, 2004, 4, 11-23.	2.1	33
54	A member of a conserved Plasmodium protein family with membrane-attack complex/perforin (MACPF)-like domains localizes to the micronemes of sporozoites. Molecular and Biochemical Parasitology, 2004, 133, 15-26.	1.1	94

#	Article	IF	CITATIONS
55	Malaria parasites deck the holes in erythrocytes. Blood, 2004, 104, 3844-3844.	1.4	3
56	A Multigene Family That Interacts with the Amino Terminus of Plasmodium MSP-1 Identified Using the Yeast Two-Hybrid System. Eukaryotic Cell, 2002, 1, 915-925.	3.4	36
57	Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa. International Journal for Parasitology, 2002, 32, 1-14.	3.1	50
58	Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 2002, 419, 498-511.	27.8	3,881
59	Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, 2002, 419, 512-519.	27.8	666
60	Two classes of plant-like vacuolar-type H+-pyrophosphatases in malaria parasites. Molecular and Biochemical Parasitology, 2001, 114, 183-195.	1.1	77
61	Antibodies against Ribosomal Phosphoprotein P0 of Plasmodium falciparum Protect Mice against Challenge with Plasmodium yoelii. Infection and Immunity, 2000, 68, 4312-4318.	2.2	36
62	Atovaquone resistance in malaria parasites. Drug Resistance Updates, 2000, 3, 283-287.	14.4	69
63	A Mechanism for the Synergistic Antimalarial Action of Atovaquone and Proguanil. Antimicrobial Agents and Chemotherapy, 1999, 43, 1334-1339.	3.2	247
64	Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Molecular Microbiology, 1999, 33, 704-711.	2.5	291
65	Plasmodium falciparum:Import of a Phosphate Carrier Protein into Heterologous Mitochondria. Experimental Parasitology, 1998, 88, 252-254.	1.2	14
66	Divergent evolutionary constraints on mitochondrial and nuclear genomes of malaria parasites. Molecular and Biochemical Parasitology, 1998, 95, 69-80.	1.1	42
67	Atovaquone, a Broad Spectrum Antiparasitic Drug, Collapses Mitochondrial Membrane Potential in a Malarial Parasite. Journal of Biological Chemistry, 1997, 272, 3961-3966.	3.4	346
68	Molecular characterization of a Plasmodium falciparum gene encoding the mitochondrial phosphate carrier. Molecular and Biochemical Parasitology, 1996, 78, 297-301.	1.1	8
69	A genetic locus on Plasmodium falciparum chromosome 12 linked to a defect in mosquito-infectivity and male gametogenesis. Molecular and Biochemical Parasitology, 1995, 69, 65-71.	1.1	48
70	Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Molecular and Biochemical Parasitology, 1993, 58, 33-42.	1.1	116
71	Sequences similar to genes for two mitochondrial proteins and portions of ribosomal RNA in tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Molecular and Biochemical Parasitology, 1989, 35, 97-107.	1.1	165
72	Molecular cloning and partial sequence of a 5.8 kilobase pair repetitive DNA from Plasmodium falciparum. Molecular and Biochemical Parasitology, 1988, 30, 289-290.	1.1	42

#	Article	IF	CITATIONS
73	Molecular clones of α-tubulin genes of Plasmodium yoelii reveal an unusual feature of the carboxy terminus. Molecular and Biochemical Parasitology, 1988, 30, 165-174.	1.1	12
74	Regulatory sequences of endogenous mouse mammary tumor virus locus Mtv-8 from different mouse strains. Nucleic Acids Research, 1987, 15, 4353-4353.	14.5	0
75	Tandemly arranged gene clusters of malarial parasites that are highly conserved and transcribed. Molecular and Biochemical Parasitology, 1987, 22, 249-257.	1.1	86
76	Lack of induction of murine mammary tumor virus expression in cultured mammary glands treated with chemical carcinogens. International Journal of Cancer, 1981, 27, 811-817.	5.1	5
77	Mycoplasmal infection of lymphocyte cell cultures: Infection withM. salivarium. In Vitro, 1980, 16, 346-356.	1.2	28
78	Mammary Tumor Viruses. Advances in Cancer Research, 1979, 29, 347-418.	5.0	143
79	Bioactivities and the effect of dilution on various milk-borne murine mammary tumor viruses. International Journal of Cancer, 1979, 24, 792-799.	5.1	0
80	In Vitro Susceptibility of Mink Lung Cells to the Mouse Mammary Tumor Virus2. Journal of the National Cancer Institute, 1976, 57, 447-449.	6.3	34
81	Homology between human breast tumour RNA and mouse mammary tumour virus genome. Nature, 1974, 249, 565-567.	27.8	60
82	Isolation and Characterization of RNA-Directed DNA Polymerase from a B-Type RNA Tumor Virus. Journal of Virology, 1974, 14, 40-46.	3.4	46
83	The Mitochondrion. , 0, , 234-252.		5