
Andrew L Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7690245/publications.pdf Version: 2024-02-01

ANDREW L ROSE

#	Article	IF	CITATIONS
1	Crop fertilisation potential of phosphorus in hydrochars produced from sewage sludge. Science of the Total Environment, 2022, 817, 153023.	3.9	18
2	Reactive oxygen species in the world ocean and their impacts on marine ecosystems. Redox Biology, 2022, 52, 102285.	3.9	37
3	Optical analysis of a semi-transparent packed bed of spheres for next-generation volumetric solar receivers. Energy, 2022, 252, 123985.	4.5	7
4	Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata. Frontiers in Microbiology, 2021, 12, 726138.	1.5	10
5	Development of a novel high-temperature, pressurised, indirectly-irradiated cavity receiver. Energy Conversion and Management, 2020, 204, 112175.	4.4	19
6	Reply to comment: Non-classical nucleation towards separation and recycling science: Iron and aluminium (oxy)(hydr)oxides. Current Opinion in Colloid and Interface Science, 2020, 46, 130.	3.4	0
7	Nonclassical nucleation towards separation and recycling science: Iron and aluminium (Oxy)(hydr)oxides. Current Opinion in Colloid and Interface Science, 2020, 46, 114-127.	3.4	9
8	A novel high-temperature (>700°C), volumetric receiver with a packed bed of transparent and absorbing spheres. Applied Energy, 2020, 264, 114705.	5.1	21
9	Design of high-temperature atmospheric and pressurised gas-phase solar receivers: A comprehensive review on numerical modelling and performance parameters. Solar Energy, 2020, 201, 701-723.	2.9	23
10	Phosphorus speciation and bioavailability in diverse biochars. Plant and Soil, 2019, 443, 233-244.	1.8	22
11	Response surface statistical optimisation of zeolite-X/silica by hydrothermal synthesis. Journal of Materials Science, 2019, 54, 14677-14689.	1.7	6
12	Sorption of phosphate and silicate alters dissolution kinetics of poorly crystalline iron (oxyhydr)oxide. Chemosphere, 2019, 234, 690-701.	4.2	26
13	Calcium coordination environment in precursor species to calcium carbonate mineral formation. Geochimica Et Cosmochimica Acta, 2019, 259, 344-357.	1.6	12
14	High-temperature, point-focus, pressurised gas-phase solar receivers: A comprehensive review. Energy Conversion and Management, 2019, 185, 678-717.	4.4	63
15	Porewater inputs drive Fe redox cycling in the water column of a temperate mangrove wetland. Estuarine, Coastal and Shelf Science, 2018, 207, 259-268.	0.9	8
16	Measuring total dissolved Fe concentrations in phytoplankton cultures in the presence of synthetic and organic ligands using a modified ferrozine method. Marine Chemistry, 2018, 203, 22-27.	0.9	2
17	The characterization of iron (III) in seawater and related toxicity to early life stages of scleractinian corals. Environmental Toxicology and Chemistry, 2018, 37, 1104-1114.	2.2	11
18	Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles onÂaÂmarine larva. Environmental Pollution, 2017, 228, 190-200.	3.7	19

Andrew L Rose

#	Article	IF	CITATIONS
19	The Influence of Reactive Oxygen Species on Local Redox Conditions in Oxygenated Natural Waters. Frontiers in Earth Science, 2016, 4, .	0.8	9
20	Importance of Iron Complexation for Fenton-Mediated Hydroxyl Radical Production at Circumneutral pH. Frontiers in Marine Science, 2016, 3, .	1.2	73
21	The potential of benthic iron and phosphorus fluxes to support the growth of a bloom forming toxic cyanobacterium Lyngbya majuscula, Moreton Bay, Australia. Marine and Freshwater Research, 2016, 67, 1918.	0.7	10
22	An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate. Geochimica Et Cosmochimica Acta, 2016, 177, 150-169.	1.6	27
23	Manganese and iron release from mangrove porewaters: A significant component of oceanic budgets?. Marine Chemistry, 2016, 184, 43-52.	0.9	42
24	Sedimentary iron–phosphorus cycling under contrasting redox conditions in a eutrophic estuary. Chemical Geology, 2015, 392, 19-31.	1.4	55
25	Landslide-induced iron mobilisation shapes benthic accumulation of nutrients, trace metals and REE fractionation in an oligotrophic alpine stream. Geochimica Et Cosmochimica Acta, 2015, 148, 1-22.	1.6	8
26	Resolving Early Stages of Homogeneous Iron(III) Oxyhydroxide Formation from Iron(III) Nitrate Solutions at pH 3 Using Time-Resolved SAXS. Langmuir, 2014, 30, 3548-3556.	1.6	29
27	Effect of Natural Organic Matter on Iron Uptake by the Freshwater Cyanobacterium <i>Microcystis aeruginosa</i> . Environmental Science & Technology, 2014, 48, 365-374.	4.6	22
28	An online calculator for marine phytoplankton iron culturing experiments. Journal of Phycology, 2013, 49, 1017-1021.	1.0	1
29	Hydroxyl Radical Production by H ₂ O ₂ -Mediated Oxidation of Fe(II) Complexed by Suwannee River Fulvic Acid Under Circumneutral Freshwater Conditions. Environmental Science & Technology, 2013, 47, 829-835.	4.6	95
30	Decoupling between Water Column Oxygenation and Benthic Phosphate Dynamics in a Shallow Eutrophic Estuary. Environmental Science & Technology, 2013, 47, 3114-3121.	4.6	46
31	Iron Redox Transformations in Continuously Photolyzed Acidic Solutions Containing Natural Organic Matter: Kinetic and Mechanistic Insights. Environmental Science & Technology, 2013, 47, 9190-9197.	4.6	35
32	Mechanism and Kinetics of Dark Iron Redox Transformations in Previously Photolyzed Acidic Natural Organic Matter Solutions. Environmental Science & Technology, 2013, 47, 1861-1869.	4.6	59
33	Seas of Superoxide. Science, 2013, 340, 1176-1177.	6.0	18
34	Effects of pH, Chloride, and Bicarbonate on Cu(I) Oxidation Kinetics at Circumneutral pH. Environmental Science & Technology, 2012, 46, 1527-1535.	4.6	119
35	Impact of Natural Organic Matter on H2O2-Mediated Oxidation of Fe(II) in Coastal Seawaters. Environmental Science & Technology, 2012, 46, 11078-11085.	4.6	35
36	Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture. Applied and Environmental Microbiology, 2012, 78, 1574-1583.	1.4	41

ANDREW L ROSE

#	Article	IF	CITATIONS
37	Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences, 2012, 74, 683-734.	0.6	330
38	Kinetics of Cu(II) Reduction by Natural Organic Matter. Journal of Physical Chemistry A, 2012, 116, 6590-6599.	1.1	86
39	The Influence of Extracellular Superoxide on Iron Redox Chemistry and Bioavailability to Aquatic Microorganisms. Frontiers in Microbiology, 2012, 3, 124.	1.5	55
40	Effect of Light on Iron Uptake by the Freshwater Cyanobacterium <i>Microcystis aeruginosa</i> . Environmental Science & Technology, 2011, 45, 1391-1398.	4.6	59
41	Phthalhydrazide Chemiluminescence Method for Determination of Hydroxyl Radical Production: Modifications and Adaptations for Use in Natural Systems. Analytical Chemistry, 2011, 83, 261-268.	3.2	49
42	Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochimica Et Cosmochimica Acta, 2011, 75, 4310-4320.	1.6	142
43	Influence of phosphate on the oxidation kinetics of nanomolar Fe(II) in aqueous solution at circumneutral pH. Geochimica Et Cosmochimica Acta, 2011, 75, 4601-4610.	1.6	30
44	Novel application of a fish gill cell line assay to assess ichthyotoxicity of harmful marine microalgae. Harmful Algae, 2011, 10, 366-373.	2.2	50
45	Comment on "Application of a superoxide (O2â^') thermal source (SOTS-1) for the determination and calibration of O2â~' fluxes in seawater―by Heller and Croot. Analytica Chimica Acta, 2011, 702, 144-145.	2.6	3
46	Iron Uptake by Toxic and Nontoxic Strains of Microcystis aeruginosa. Applied and Environmental Microbiology, 2011, 77, 7068-7071.	1.4	25
47	Pathways Contributing to the Formation and Decay of Ferrous Iron in Sunlit Natural Waters. ACS Symposium Series, 2011, , 153-176.	0.5	6
48	Dynamics of nonphotochemical superoxide production in the Great Barrier Reef lagoon. Limnology and Oceanography, 2010, 55, 1521-1536.	1.6	45
49	Effect of Fe(II) and Fe(III) Transformation Kinetics on Iron Acquisition by a Toxic Strain of Microcystis aeruginosa. Environmental Science & Technology, 2010, 44, 1980-1986.	4.6	55
50	Oxygen and Superoxide-Mediated Redox Kinetics of Iron Complexed by Humic Substances in Coastal Seawater. Environmental Science & Technology, 2010, 44, 9337-9342.	4.6	45
51	Impact of natural organic matter on H2O2-mediated oxidation of Fe(II) in a simulated freshwater system. Geochimica Et Cosmochimica Acta, 2009, 73, 2758-2768.	1.6	50
52	New method for the determination of extracellular production of superoxide by marine phytoplankton using the chemiluminescence probes MCLA and red LA. Limnology and Oceanography: Methods, 2009, 7, 682-692.	1.0	52
53	Transformation dynamics and reactivity of dissolved and colloidal iron in coastal waters. Marine Chemistry, 2008, 110, 165-175.	0.9	24
54	Measurement and Implications of Nonphotochemically Generated Superoxide in the Equatorial Pacific Ocean. Environmental Science & Technology, 2008, 42, 2387-2393.	4.6	86

Andrew L Rose

#	Article	IF	CITATIONS
55	Effect of divalent cations on the kinetics of Fe(III) complexation by organic ligands in natural waters. Geochimica Et Cosmochimica Acta, 2008, 72, 1335-1349.	1.6	44
56	Superoxide-mediated Fe(II) formation from organically complexed Fe(III) in coastal waters. Geochimica Et Cosmochimica Acta, 2008, 72, 6079-6089.	1.6	40
57	Determination of Superoxide in Seawater Using 2-Methyl-6-(4-methoxyphenyl)-3,7- dihydroimidazo[1,2-a]pyrazin-3(7 <i>H</i>)-one Chemiluminescence. Analytical Chemistry, 2008, 80, 1215-1227.	3.2	82
58	Reconciling kinetic and equilibrium observations of iron(III) solubility in aqueous solutions with a polymer-based model. Geochimica Et Cosmochimica Acta, 2007, 71, 5605-5619.	1.6	26
59	Superoxide-mediated reduction of organically complexed iron(III): Impact of pH and competing cations (Ca2+). Geochimica Et Cosmochimica Acta, 2007, 71, 5620-5634.	1.6	20
60	Superoxide Mediated Reduction of Organically Complexed Iron(III):Â Comparison of Non-Dissociative and Dissociative Reduction Pathways. Environmental Science & Technology, 2007, 41, 3205-3212.	4.6	57
61	Production of Reactive Oxygen Species on Photolysis of Dilute Aqueous Quinone Solutions. Photochemistry and Photobiology, 2007, 83, 904-913.	1.3	56
62	Iron uptake by the ichthyotoxic <i>Chattonella marina</i> (Raphidophyceae): impact of superoxide generation ¹ . Journal of Phycology, 2007, 43, 978-991.	1.0	43
63	Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0–9.5 and 25°C. Geochimica Et Cosmochimica Acta, 2006, 70, 640-650.	1.6	144
64	Superoxide-Mediated Dissolution of Amorphous Ferric Oxyhydroxide in Seawater. Environmental Science & Technology, 2006, 40, 880-887.	4.6	61
65	Role of superoxide in the photochemical reduction of iron in seawater. Geochimica Et Cosmochimica Acta, 2006, 70, 3869-3882.	1.6	80
66	The FeL model of iron acquisition: Nondissociative reduction of ferric complexes in the marine environment. Limnology and Oceanography, 2006, 51, 1744-1754.	1.6	67
67	Reduction of Organically Complexed Ferric Iron by Superoxide in a Simulated Natural Water. Environmental Science & Technology, 2005, 39, 2645-2650.	4.6	157
68	Use of Superoxide as an Electron Shuttle for Iron Acquisition by the Marine CyanobacteriumLyngbya majuscula. Environmental Science & Technology, 2005, 39, 3708-3715.	4.6	136
69	The effect of dissolved natural organic matter on the rate of removal of ferrous iron in fresh waters. Water Science and Technology: Water Supply, 2004, 4, 213-219.	1.0	4
70	Predicting iron speciation in coastal waters from the kinetics of sunlight-mediated iron redox cycling. Aquatic Sciences, 2003, 65, 375-383.	0.6	67
71	Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Marine Chemistry, 2003, 84, 85-103.	0.9	234
72	Kinetics of Hydrolysis and Precipitation of Ferric Iron in Seawater. Environmental Science & Technology, 2003, 37, 3897-3903.	4.6	99

#	Article	IF	CITATIONS
73	Effect of Dissolved Natural Organic Matter on the Kinetics of Ferrous Iron Oxygenation in Seawater. Environmental Science & Technology, 2003, 37, 4877-4886.	4.6	132
74	Kinetic Model for Fe(II) Oxidation in Seawater in the Absence and Presence of Natural Organic Matter. Environmental Science & Technology, 2002, 36, 433-444.	4.6	297
75	Chemiluminescence of Luminol in the Presence of Iron(II) and Oxygen:Â Oxidation Mechanism and Implications for Its Analytical Use. Analytical Chemistry, 2001, 73, 5909-5920.	3.2	161