Malcolm K Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7689747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science, 2009, 326, 1256-1260.	12.6	1,894
2	Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 1998, 392, 779-787.	27.8	1,607
3	Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophysical Research Letters, 1999, 26, 759-762.	4.0	1,511
4	Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13252-13257.	7.1	1,035
5	Global Temperature Patterns in Past Centuries: An Interactive Presentation. Earth Interactions, 2000, 4, 1-1.	1.5	604
6	A large carbon sink in the woody biomass of Northern forests. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14784-14789.	7.1	568
7	Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999, 400, 149-151.	27.8	536
8	Was there a ?medieval warm period?, and if so, where and when?. Climatic Change, 1994, 26, 109-142.	3.6	494
9	The climate of the US Southwest. Climate Research, 2002, 21, 219-238.	1.1	486
10	CLIMATE CHANGE: Climate in Medieval Time. Science, 2003, 302, 404-405.	12.6	350
11	Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20348-20353.	7.1	313
12	Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 2003, 84, 393-410.	11.0	307
13	Medieval drought in the upper Colorado River Basin. Geophysical Research Letters, 2007, 34, .	4.0	297
14	SACRAMENTO RIVER FLOW RECONSTRUCTED TO A.D. 869 FROM TREE RINGS1. Journal of the American Water Resources Association, 2001, 37, 1029-1039.	2.4	222
15	Dendrochronology in climatology – the state of the art. Dendrochronologia, 2002, 20, 95-116.	2.2	220
16	The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees - Structure and Function, 2003, 17, 61-69.	1.9	210
17	Proxy-Based Northern Hemisphere Surface Temperature Reconstructions: Sensitivity to Method, Predictor Network, Target Season, and Target Domain. Journal of Climate, 2005, 18, 2308-2329. 	3.2	198
18	Tropical Pacific – mid-latitude teleconnections in medieval times. Climatic Change, 2007, 83, 241-285.	3.6	195

#	Article	IF	CITATIONS
19	Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr. Quaternary Research, 2007, 67, 57-68.	1.7	194
20	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Climate Dynamics, 2005, 25, 75-98.	3.8	163
21	Reconstructing Summer Temperatures in Northern Fennoscandinavia Back to A.D. 1700 Using Tree-Ring Data from Scots Pine. Arctic and Alpine Research, 1988, 20, 385.	1.3	162
22	An efficient forward model of the climate controls on interannual variation in tree-ring width. Climate Dynamics, 2011, 36, 2419-2439.	3.8	145
23	Tree rings and volcanic cooling. Nature Geoscience, 2012, 5, 836-837.	12.9	137
24	Spatial and Temporal Characteristics of Climate in Medieval Times Revisited. Bulletin of the American Meteorological Society, 2011, 92, 1487-1500.	3.3	129
25	Spatial Patterns of Tree-Growth Anomalies in the United States and Southeastern Canada. Journal of Climate, 1993, 6, 1773-1786.	3.2	123
26	A Preliminary Reconstruction of Rainfall in North-Central China since A.D. 1600 from Tree-Ring Density and Width. Quaternary Research, 1994, 42, 88-99.	1.7	122
27	Preliminary reconstructions of spring precipitation in southwestern Turkey from tree-ring width. International Journal of Climatology, 2003, 23, 157-171.	3.5	119
28	Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene, 1999, 9, 629-634.	1.7	118
29	A 396-YEAR RECONSTRUCTION OF PRECIPITATION IN SOUTHERN JORDAN. Journal of the American Water Resources Association, 1999, 35, 49-59.	2.4	111
30	May–June precipitation reconstruction of southwestern anatolia, Turkey during the last 900 years from tree rings. Quaternary Research, 2007, 68, 196-202.	1.7	100
31	Standardized Precipitation Index Reconstructed from Turkish Tree-Ring Widths. Climatic Change, 2005, 72, 339-353.	3.6	96
32	On past temperatures and anomalous late-20th-century warmth. Eos, 2003, 84, 256-256.	0.1	95
33	July–August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data. Nature, 1984, 308, 341-344.	27.8	93
34	Drought frequency in central California since 101 B.C. recorded in giant sequoia tree rings. Climate Dynamics, 1992, 6, 161-167.	3.8	93
35	Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany, 2012, 109, 1091-1100.	2.9	86
36	Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Climate Dynamics, 2014, 42, 1517-1526.	3.8	84

#	Article	IF	CITATIONS
37	Seasonal precipitation in the south-central Helan Mountain region, China, reconstructed from tree-ring width for the past 224 years. Canadian Journal of Forest Research, 2005, 35, 2403-2412.	1.7	82
38	Cool-season precipitation in the southwestern USA since AD 1000: comparison of linear and nonlinear techniques for reconstruction. International Journal of Climatology, 2002, 22, 1645-1662.	3.5	79
39	Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi. Canadian Journal of Forest Research, 2003, 33, 1905-1914.	1.7	78
40	Changing climate response in near-treeline bristlecone pine with elevation and aspect. Environmental Research Letters, 2014, 9, 114007.	5.2	76
41	Dendrochronology in Jordan. Journal of Arid Environments, 1999, 42, 291-303.	2.4	69
42	Multimillennial dendroclimatic studies from the western United States. , 1996, , 109-124.		67
43	Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia, 2020, 64, 125757.	2.2	66
44	Inter-decadal signals during the last millennium (AD 1117-1992) in the Varve record of Santa Barbara Basin, California. Geophysical Research Letters, 1997, 24, 193-196.	4.0	65
45	The influence of decision-making in tree ring-based climate reconstructions. Nature Communications, 2021, 12, 3411.	12.8	59
46	Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia. Environmental Research Letters, 2013, 8, 035034.	5.2	59
47	Optimal surface temperature reconstructions using terrestrial borehole data. Journal of Geophysical Research, 2003, 108, .	3.3	58
48	Holocene paleoclimate records from a large California estuarine system and its watershed region: linking watershed climate and bay conditions. Quaternary Science Reviews, 2006, 25, 1570-1598.	3.0	53
49	Topographically modified tree-ring chronologies as a potential means to improve paleoclimate inference. Climatic Change, 2011, 105, 627-634.	3.6	52
50	Sapwood estimates in the interpretation of tree-ring dates. Journal of Archaeological Science, 1981, 8, 381-390.	2.4	51
51	Title is missing!. Climatic Change, 2003, 59, 233-244.	3.6	47
52	Climate and signature years in west European oaks. Nature, 1989, 340, 57-60.	27.8	46
53	July temperature during the second millennium reconstructed from Idaho tree rings. Geophysical Research Letters, 1999, 26, 1445-1448.	4.0	42
54	Separating the climatic signal from tree-ring width and maximum latewood density records. Trees - Structure and Function, 2006, 21, 37-44.	1.9	40

#	Article	IF	CITATIONS
55	The future of the past—an earth system framework for high resolution paleoclimatology: editorial essay. Climatic Change, 2009, 94, 247-259.	3.6	40
56	Extremes of moisture availability reconstructed from tree rings for recent millennia in the great basin of western north America. , 1998, , 99-107.		38
57	Reconstructing the Mediaeval low stands of Mono Lake, Sierra Nevada, California, USA. Holocene, 2007, 17, 1197-1210.	1.7	38
58	Was There a â€~Medieval Warm Period', and if so, Where and When?. , 1994, , 109-142.		37
59	Probabilistic reconstructions of local temperature and soil moisture from tree-ring data with potentially time-varying climatic response. Climate Dynamics, 2015, 44, 791-806.	3.8	33
60	An interpreted language implementation of the Vaganov–Shashkin tree-ring proxy system model. Dendrochronologia, 2020, 60, 125677.	2.2	33
61	Tree-ring growth curves as sources of climatic information. Quaternary Research, 2004, 62, 126-133.	1.7	32
62	Climatic signals in British Isles tree-ring chronologies. Nature, 1978, 272, 605-606.	27.8	31
63	The Scope of Medieval Warming. Science, 2001, 292, 2011b-2012.	12.6	30
64	Ice-layer dating of eruption at Santorini. Nature, 1988, 335, 211-212.	27.8	28
65	Spatiotemporal Variability in the Climate Growth Response of High Elevation Bristlecone Pine in the White Mountains of California. Geophysical Research Letters, 2018, 45, 13,312.	4.0	28
66	Tree-Ring Chronologies and Climate Variability. Science, 2002, 296, 848-849.	12.6	26
67	Exploratory Temperature and Precipitation Reconstructions from the Qinling Mountains, North-Central China. Tree-Ring Research, 2005, 61, 59-72.	0.6	26
68	Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Climate of the Past, 2019, 15, 685-700.	3.4	26
69	Long-Term Variability in the El Niño/Southern Oscillation and Associated Teleconnections. , 0, , 357-410.		25
70	Climate variability and change in the drylands of Western North America. Global and Planetary Change, 2008, 64, 111-118.	3.5	24
71	Seasonal Calorific Values from a Deciduous Woodland in England. Ecology, 1971, 52, 923-926.	3.2	22
72	Dendroclimatology in High-Resolution Paleoclimatology. Developments in Paleoenvironmental Research, 2011, , 17-34.	8.0	22

#	Article	IF	CITATIONS
73	Dendroclimatology from Regional to Continental Scales: Understanding Regional Processes to Reconstruct Large-Scale Climatic Variations Across the Western Americas. Developments in Paleoenvironmental Research, 2011, , 175-227.	8.0	20
74	Ground vegetation net production in a Danish beech wood. Oecologia, 1975, 18, 251-258.	2.0	19
75	A cluster of stratospheric volcanic eruptions in the AD 530s recorded in Siberian tree rings. Global and Planetary Change, 2014, 122, 140-150.	3.5	18
76	A Global Paleoclimate Observing System. Science, 2001, 293, 47c-48.	12.6	18
77	Trends In Elemental Concentrations of Tree Rings From the Siberian Arctic. Tree-Ring Research, 2016, 72, 67-77.	0.6	13
78	Global Temperature Patterns. Science, 1998, 280, 2027e-2027.	12.6	13
79	A Single-Year δ13C Chronology from Pinus Tabulaeformis (Chinese Pine) Tree Rings at Huangling, China. Radiocarbon, 1995, 37, 605-610.	1.8	12
80	Engineering design of an image acquisition and analysis system for dendrochronology. Optical Engineering, 2000, 39, 453.	1.0	12
81	The Tunguska Event in 1908: Evidence from Tree-Ring Anatomy. Astrobiology, 2004, 4, 391-399.	3.0	12
82	Regional features of the radial growth of larch in north central Siberia according to millennial tree-ring chronologies. Russian Journal of Ecology, 2007, 38, 90-93.	0.9	10
83	Different climate responses of spruce and pine growth in Northern European Russia. Dendrochronologia, 2019, 56, 125601.	2.2	10
84	commentary and analysis: Comments on "Detection and Attribution of Recent Climate Change: A Status Report". Bulletin of the American Meteorological Society, 2000, 81, 2987-2992.	3.3	9
85	Recognising bias in Common Era temperature reconstructions. Dendrochronologia, 2022, 74, 125982.	2.2	8
86	reply: Constraints to growth of boreal forests. Nature, 2000, 405, 905-905.	27.8	6
87	Response "[to Comment on â€`On past temperatures and anomalous late-20th-century warmth'â€]. Eos, 2003, 84, 473.	0.1	6
88	Reconstructing late Holocene climate. Eos, 2001, 82, 553-553.	0.1	4
89	Reply to McIntyre and McKitrick: Proxy-based temperature reconstructions are robust. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, .	7.1	4
90	Tree Rings and Climate: Sharpening the Focus. Developments in Paleoenvironmental Research, 2011, , 331-353.	8.0	3

#	Article	IF	CITATIONS
91	Harold Clark Fritts 1928–2019. Tree-Ring Research, 2019, 75, 167.	0.6	2
92	Volcanic Eruptions over the Last 5,000 Years from High Elevation Tree-Ring Widths and Frost Rings. Advances in Global Change Research, 2010, , 469-482.	1.6	2
93	Report of the Workshop, "Prospects for Temporal Extension of the Radiocarbon Calibrationâ€ , 19 May 1991. Radiocarbon, 1992, 34, 941-941.	1.8	1
94	Volcanic Signals in Temperature Reconstructions Based on Tree-Ring Records for North and South America. , 2001, , 141-154.		1
95	Authors were clear about hockey-stick uncertainties. Nature, 2006, 442, 627-627.	27.8	1
96	Test Contains Color Images. Biotechnology Letters, 0, , 1-24.	2.2	1
97	Assessing Climate Variability in the Southwest: State of the Science. , 1999, , 1.		0
98	A Not-So-Abrupt Departure. Science, 2006, 312, 528-529.	12.6	0
99	Keith R. Briffa. Tree-Ring Research, 2018, 74, 132-133.	0.6	0
100	Test deadline calculation for Joint Workflow 1.7 - 1.8. Biotechnology Letters, 0, , 1-24.	2.2	0
101	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Biotechnology Letters, 0, , 1-24.	2.2	0
102	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Biotechnology Letters, 0, , 1-24.	2.2	0
103	Issue building article for Joint Workflow 1.7 - 1.8. Biotechnology Letters, 0, , 1-24.	2.2	0
104	Article for issuebuilding instruction Joint Workflow 1.7 - 1.8. Biotechnology Letters, 2005, 29, 239-262.	2.2	0
105	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Biotechnology Letters, 2005, 29, 333-356.	2.2	0
106	Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Biotechnology Letters, 0, , 1-24.	2.2	0
107	Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Biotechnology Letters, 2005, 29, 35-58.	2.2	0

108 Test Contains Color Images. Biotechnology Letters, 0, , 1-24.

2.2 0

#	Article	IF	CITATIONS
109	Demo, demo, demo. Biotechnology Letters, 0, , 1-24.	2.2	0
110	One more article for issuebuilding in the Joint Workflow 1.7 - 1.8. Biotechnology Letters, 2005, 29, 263-286.	2.2	0
111	Lister and Rimmer are going out for a SpACE walk. Biotechnology Letters, 0, , 1-24.	2.2	0
112	Testing the erratum workflow once more, third time!. Biotechnology Letters, 0, , 1-24.	2.2	0
113	Testing the erratum workflow once more, fourth time!. Biotechnology Letters, 0, , 1-24.	2.2	0
114	test cross linking erratum and original article. Biotechnology Letters, 0, , 1-24.	2.2	0
115	Test Contains Color Images. Biotechnology Letters, 0, , 1-24.	2.2	0
116	Testcases for new erratum workflow functionality. Biotechnology Letters, 0, , 1-24.	2.2	0
117	Demo Reinhold Michels in Dordrecht!. Biotechnology Letters, 0, , 1-24.	2.2	0
118	Update Content zip file at stage 200 / 300. Biotechnology Letters, 0, , 1-24.	2.2	0
119	Test address export from SpACE to JEM. Biotechnology Letters, 0, , 1-24.	2.2	0
120	Last testcase for new erratum workflow functionality. Biotechnology Letters, 0, , 1-24.	2.2	0
121	Testcase 2 for erratum workflow functionality in 1.9. Biotechnology Letters, 0, , 1-24.	2.2	0
122	Test color images on page for Joint Workflow 1.09.04a. Biotechnology Letters, 0, , 1-24.	2.2	0
123	Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Biotechnology Letters, 0, , 1-24.	2.2	0
124	Testcases for new erratum workflow functionality. Biotechnology Letters, 0, , 1-24.	2.2	0
125	Testcases for new erratum workflow functionality. Biotechnology Letters, 0, , 1-24.	2.2	0