
Yanming Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7689206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Letters, 2018, 10, 75.	27.0	412
2	Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy, 2016, 26, 313-323.	16.0	345
3	Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology, 2013, 24, 155603.	2.6	203
4	Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Scientific Reports, 2013, 3, 3208.	3.3	203
5	Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy, 2017, 31, 152-159.	16.0	201
6	In situ electrochemical formation of core–shell nickel–iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms. Journal of Materials Chemistry A, 2017, 5, 4335-4342.	10.3	166
7	"Protrusions―or "holes―in graphene: which is the better choice for sodium ion storage?. Energy and Environmental Science, 2017, 10, 979-986.	30.8	164
8	Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. Journal of Materials Chemistry A, 2016, 4, 1469-1478.	10.3	133
9	Improved Li ⁺ Storage through Homogeneous Nâ€Đoping within Highly Branched Tubular Graphitic Foam. Advanced Materials, 2017, 29, 1603692.	21.0	113
10	Multifunctional Superelastic Foam-Like Boron Nitride Nanotubular Cellular-Network Architectures. ACS Nano, 2017, 11, 558-568.	14.6	110
11	Design of BN porous sheets with richly exposed (002) plane edges and their application as TiO2 visible light sensitizer. Nano Energy, 2015, 16, 19-27.	16.0	99
12	Densely Interconnected Porous BN Frameworks for Multifunctional and Isotropically Thermoconductive Polymer Composites. Advanced Functional Materials, 2018, 28, 1801205.	14.9	76
13	Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique. Materials and Design, 2015, 88, 451-460.	7.0	67
14	Scalable exfoliation and gradable separation of boric-acid-functionalized boron nitride nanosheets. 2D Materials, 2019, 6, 035014.	4.4	62
15	Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers. Chemical Engineering Journal, 2020, 382, 122833.	12.7	60
16	Pollutant capturing SERS substrate: porous boron nitride microfibers with uniform silver nanoparticle decoration. Nanoscale, 2015, 7, 18992-18997.	5.6	56
17	Highly Multifunctional and Thermoconductive Performances of Densely Filled Boron Nitride Nanosheets/Epoxy Resin Bulk Composites. ACS Applied Materials & Interfaces, 2021, 13, 2853-2867.	8.0	46
18	Sulfur vacancy-tailored NiCo ₂ S ₄ nanosheet arrays for the hydrogen evolution reaction at all pH values. Catalysis Science and Technology, 2020, 10, 1056-1065.	4.1	42

#	Article	IF	CITATIONS
19	Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomedicine, 2016, 11, 447-463.	3.3	41
20	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 37046-37056.	8.0	38
21	Porous boron nitride nanofibers/PVA hydrogels with improved mechanical property and thermal stability. Ceramics International, 2018, 44, 22439-22444.	4.8	38
22	Self-supported CoFe LDH/Co _{0.85} Se nanosheet arrays as efficient electrocatalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2019, 9, 5736-5744.	4.1	37
23	A novel TiO2â N /BN composite photocatalyst: Synthesis, characterization and enhanced photocatalytic activity for Rhodamine B degradation under visible light. Catalysis Communications, 2014, 57, 9-13.	3.3	36
24	Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and photoluminescence properties. Journal of Luminescence, 2013, 140, 30-37.	3.1	34
25	Defect-rich (Co, Fe)3O4 hierarchical nanosheet arrays for efficient oxygen evolution reaction. Applied Surface Science, 2020, 529, 147125.	6.1	34
26	Pore structure regulation and carbon dioxide adsorption capacity improvement on porous BN fibers: Effects of high-temperature treatments in gaseous ambient. Chemical Engineering Journal, 2019, 373, 616-623.	12.7	33
27	Largeâ€scale synthesis of hexagonal boron nitride nanosheets and their improvement in thermal properties of epoxy composites. Polymer Composites, 2014, 35, 1707-1715.	4.6	31
28	Porous boron nitride coupled with CdS for adsorption–photocatalytic synergistic removal of RhB. RSC Advances, 2016, 6, 99165-99171.	3.6	31
29	Ultrathin carbon coated CoO nanosheet arrays as efficient electrocatalysts for the hydrogen evolution reaction. Catalysis Science and Technology, 2019, 9, 6957-6964.	4.1	24
30	Accelerating CO2 transport through nanoconfined magnetic ionic liquid in laminated BN membrane. Chemical Engineering Journal, 2021, 423, 130309.	12.7	24
31	N,N-Dimethyl formamide facilitated formation of hexagonal boron nitride from boric acid. Solid State Sciences, 2013, 24, 1-5.	3.2	22
32	Hybrid nanonet/nanoflake NiCo2O4 electrodes with an ultrahigh surface area for supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 3143-3152.	2.5	21
33	Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes. Scientific Reports, 2015, 5, 8492.	3.3	21
34	Synthesis of Perovskite CsPbBr ₃ Quantum Dots/Porous Boron Nitride Nanofiber Composites with Improved Stability and Their Reversible Optical Response to Ammonia. Inorganic Chemistry, 2020, 59, 1234-1241.	4.0	21
35	Hierarchically porous boron nitride foams for multifunctional bulk adsorbents. Chemical Engineering Journal, 2021, 422, 129896.	12.7	21
36	Engineering O–O Species in Boron Nitrous Nanotubes Increases Olefins for Propane Oxidative Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 5930-5936.	13.7	21

#	Article	IF	CITATIONS
37	Preparation optimization and spectral properties of BCNO phosphors with high quantum efficiency. Journal of Luminescence, 2014, 153, 338-342.	3.1	16
38	Boron nitride nanotube-based amphiphilic hybrid nanomaterials for superior encapsulation of hydrophobic cargos. Materials Today Chemistry, 2017, 6, 45-50.	3.5	14
39	Interfacial modification of Co(OH) ₂ /Co ₃ O ₄ nanosheet heterostructure arrays for the efficient oxygen evolution reaction. Catalysis Science and Technology, 2021, 11, 3706-3714.	4.1	14
40	Synthesis and photoluminescence characteristics of (Sr, Ca)3B2O6:Eu for application in white light-emitting diodes. Journal of Luminescence, 2011, 131, 2016-2020.	3.1	13
41	Acid-assisted hydrothermal synthesis and adsorption properties of high-specific-surface metal–organic frameworks. Materials Letters, 2014, 132, 90-93.	2.6	13
42	Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes. Journal of Applied Physics, 2015, 118, 234307.	2.5	12
43	Enhanced Adsorption of Polysulfides on Carbon Nanotubes/Boron Nitride Fibers for Highâ€Performance Lithiumâ€Sulfur Batteries. Chemistry - A European Journal, 2020, 26, 17567-17573.	3.3	12
44	Photoelectric and magnetic properties of boron nitride nanosheets with turbostratic structure and oxygen doping. 2D Materials, 2022, 9, 015014.	4.4	12
45	Synthesis and hydrogen absorption of high-specific-surface ultrafine theta-Al2O3 nanowires. Journal of Crystal Growth, 2013, 382, 52-55.	1.5	10
46	Improved capture of carbon dioxide and methane via adding micropores within porous boron nitride fibers. Journal of Materials Science, 2019, 54, 10168-10178.	3.7	10
47	Boron nitride nanosheets wrapped by reduced graphene oxide for promoting polysulfides adsorption in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2022, 610, 527-537.	9.4	10
48	Enhanced Li+ storage through highly hybridized networks of self-assembled SnS2/rGO aerogels. Journal of Alloys and Compounds, 2020, 828, 154192.	5.5	8
49	Synthesis of Nanostructured Boron Nitride Aerogels by Rapid Pyrolysis of Melamine Diborate Aerogels via Induction Heating: From Composition Adjustment to Property Studies. ACS Applied Nano Materials, 2021, 4, 13788-13797.	5.0	8
50	Electrospun CF-PHA Nanocomposites: Effect of Surface Modifications of Carbon Fibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 262-267.	3.4	7
51	Boron Nitride Quasi-Nanoscale Fibers: Controlled Synthesis and Improvement on Thermal Properties of PHA Polymer. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 794-799.	3.4	7
52	Synthesis of uniform BN-coated aluminum borate nanowhiskers and their applications in reinforced magnesium matrix composites. Materials Chemistry and Physics, 2012, 132, 347-353.	4.0	6
53	Controllable synthesis of uniformly distributed hollow rutile TiO2 hierarchical microspheres and their improved photocatalysis. Materials Chemistry and Physics, 2013, 143, 446-454.	4.0	6
54	Low-temperature collapsing boron nitride nanospheres into nanoflakes and their photoluminescence properties. Materials Research Express, 2014, 1, 035035.	1.6	6

#	Article	IF	CITATIONS
55	Nanoparticle-based screen printing of copper zinc tin sulfide thin film as photocathode for quantum dot sensitized solar cell. Materials Letters, 2015, 158, 198-201.	2.6	6
56	Ultralight and Highly Resilient Boron Nitride Nanosheet/Polyimide Foams for Energy Harvesting and Sensing. ACS Applied Polymer Materials, 2022, 4, 3236-3246.	4.4	6
57	Uniform embedding of ultrafine sulfur into well-honeycombed porous graphene frameworks for highly stable Li–S batteries. Materials Letters, 2020, 276, 128243.	2.6	5
58	Morphology controlled synthesis zinc oxide and reinforcement in polyhydroxyalkanoates composites. Polymer Composites, 2014, 35, 1701-1706.	4.6	4
59	Processing and Characterizations of Nanofiller-Modulated poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Composites. Polymer-Plastics Technology and Engineering, 2016, 55, 663-671.	1.9	4
60	Cavitating inside spherical boron nitride nanoparticles dependent on controllably follow-up treated atmospheres. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	4
61	Tunable Mechanical and Electrical Properties of Coaxial BN Nanotubes. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800576.	2.4	3
62	Metalâ€Free Boronâ€Rich Borocarbonitride Catalysts for Highâ€Efficient Oxygen Reduction to Produce Hydrogen Peroxideâ€. ChemistrySelect, 2022, 7, .	1.5	2
63	Controlled synthesis of boron nitride (BN) coating on Al4B2O9 nanowhiskers. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	1
64	Hexagonal boron nitride hollow capsules with collapsed surfaces: Chemical vapor deposition with single-source precursor ammonium fluoroborate*. Chinese Physics B, 2016, 25, 078107.	1.4	0
65	Kinking effects and transport properties of coaxial BN-C nanotubes as revealed by in situ transmission electron microscopy and theoretical analysis. APL Materials, 2019, 7, 101118.	5.1	О
66	Anodic TiO2 Nanotube Arrays as Fixed Photocatalyst. Journal of Environmental Science and Technology, 2016, 9, 220-225.	0.3	0
67	Probing interfacial interactions and dynamics of polymers enclosed in boron nitride nanotubes. Journal of Polymer Science, 2022, 60, 233-243.	3.8	0