Verena Jendrossek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7687749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stromal Fibroblasts Counteract the Caveolin-1-Dependent Radiation Response of LNCaP Prostate Carcinoma Cells. Frontiers in Oncology, 2022, 12, 802482.	2.8	2
2	The vascular nature of lung-resident mesenchymal stem cells. Stem Cells Translational Medicine, 2021, 10, 128-143.	3.3	16
3	The Biomarker Potential of Caveolin-1 in Penile Cancer. Frontiers in Oncology, 2021, 11, 606122.	2.8	7
4	Activation of anti-oxidant Keap1/Nrf2 pathway modulates efficacy of dihydroartemisinin-based monotherapy and combinatory therapy with ionizing radiation. Free Radical Biology and Medicine, 2021, 168, 44-54.	2.9	18
5	Metabolic reprograming of antioxidant defense: a precision medicine perspective for radiotherapy of lung cancer?. Biochemical Society Transactions, 2021, 49, 1265-1277.	3.4	4
6	Metformin Protects against Radiation-Induced Acute Effects by Limiting Senescence of Bronchial-Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 7064.	4.1	17
7	Bcl-2/Bcl-xL inhibitor ABT-263 overcomes hypoxia-driven radioresistence and improves radiotherapy. Cell Death and Disease, 2021, 12, 694.	6.3	20
8	Loss of pro-apoptotic Bax and Bak increases resistance to dihydroartemisinin-mediated cytotoxicity in normoxia but not in hypoxia in HCT116 colorectal cancer cells. Free Radical Biology and Medicine, 2021, 174, 157-170.	2.9	4
9	Metabolism of cancer cells commonly responds to irradiation by a transient early mitochondrial shutdown. IScience, 2021, 24, 103366.	4.1	15
10	Adaptation to Chronic-Cycling Hypoxia Renders Cancer Cells Resistant to MTH1-Inhibitor Treatment Which Can Be Counteracted by Glutathione Depletion. Cells, 2021, 10, 3040.	4.1	9
11	Early senescence and production of senescence-associated cytokines are major determinants of radioresistance in head-and-neck squamous cell carcinoma. Cell Death and Disease, 2021, 12, 1162.	6.3	23
12	Host CD39 Deficiency Affects Radiation-Induced Tumor Growth Delay and Aggravates Radiation-Induced Normal Tissue Toxicity. Frontiers in Oncology, 2020, 10, 554883.	2.8	3
13	A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. International Journal of Molecular Sciences, 2020, 21, 8563.	4.1	17
14	Oncometabolites and the response to radiotherapy. Radiation Oncology, 2020, 15, 197.	2.7	17
15	Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells. International Journal of Molecular Sciences, 2020, 21, 3279.	4.1	38
16	Caveolin-1 regulates the ASMase/ceramide-mediated radiation response of endothelial cells in the context of tumor–stroma interactions. Cell Death and Disease, 2020, 11, 228.	6.3	25
17	Combined radiotherapy and concurrent tumor treating fields (TTFields) for glioblastoma: Dosimetric consequences on non-coplanar IMRT as initial results from a phase I trial. Radiation Oncology, 2020, 15, 83.	2.7	11
18	Proton Irradiation Increases the Necessity for Homologous Recombination Repair Along with the Indispensability of Non-Homologous End Joining. Cells, 2020, 9, 889.	4.1	35

#	Article	IF	CITATIONS
19	Impact of Cancer-Associated Fibroblast on the Radiation-Response of Solid Xenograft Tumors. Frontiers in Molecular Biosciences, 2019, 6, 70.	3.5	33
20	The CD73/Ado System—A New Player in RT Induced Adverse Late Effects. Cancers, 2019, 11, 1578.	3.7	16
21	Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research. Cancers, 2019, 11, 1499.	3.7	31
22	Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Frontiers in Immunology, 2019, 10, 698.	4.8	64
23	Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1. Journal of Clinical Medicine, 2019, 8, 348.	2.4	23
24	Sequence-dependent cross-resistance of combined radiotherapy plus BRAFV600E inhibition in melanoma. European Journal of Cancer, 2019, 109, 137-153.	2.8	20
25	High-throughput Evaluation of Protein Migration and Localization after Laser Micro-Irradiation. Scientific Reports, 2019, 9, 3148.	3.3	6
26	Addendum: de Leve, S.; et al. The CD73/Ado System—A New Player in RT Induced Adverse Late Effects. Cancers 2019, 11, 1578. Cancers, 2019, 11, 1898.	3.7	0
27	Combining Radiotherapy and Immunotherapy in Lung Cancer: Can We Expect Limitations Due to Altered Normal Tissue Toxicity?. International Journal of Molecular Sciences, 2019, 20, 24.	4.1	100
28	Inhibition of Radiation-Induced Ccl2 Signaling Protects Lungs from Vascular Dysfunction and Endothelial Cell Loss. Antioxidants and Redox Signaling, 2019, 30, 213-231.	5.4	36
29	Relating Linear Energy Transfer to the Formation and Resolution of DNA Repair Foci After Irradiation with Equal Doses of X-ray Photons, Plateau, or Bragg-Peak Protons. International Journal of Molecular Sciences, 2018, 19, 3779.	4.1	29
30	Mentoring in a medical faculty: a chance for organisational learning. International Journal of Learning and Change, 2018, 10, 198.	0.3	1
31	Targeting SLC25A10 alleviates improved antioxidant capacity and associated radioresistance of cancer cells induced by chronic-cycling hypoxia. Cancer Letters, 2018, 439, 24-38.	7.2	42
32	Restraining Akt1 Phosphorylation Attenuates the Repair of Radiation-Induced DNA Double-Strand Breaks and Reduces the Survival of Irradiated Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 2233.	4.1	12
33	The Mitochondrial Citrate Carrier (SLC25A1) Sustains Redox Homeostasis and Mitochondrial Metabolism Supporting Radioresistance of Cancer Cells With Tolerance to Cycling Severe Hypoxia. Frontiers in Oncology, 2018, 8, 170.	2.8	54
34	New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response. Cancers, 2018, 10, 78.	3.7	90
35	Progression-related loss of stromal Caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance. Scientific Reports, 2017, 7, 41138.	3.3	21
36	Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity. Scientific Reports, 2017, 7, 42700.	3.3	32

#	Article	IF	CITATIONS
37	The Focinator v2-0 – Graphical Interface, Four Channels, Colocalization Analysis and Cell Phase Identification. Radiation Research, 2017, 188, 114-120.	1.5	35
38	Loss of CD73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs. FASEB Journal, 2017, 31, 2869-2880.	0.5	23
39	Heart dose exposure as prognostic marker after radiotherapy for resectable stage IIIA/B non-small-cell lung cancer: secondary analysis of a randomized trial. Annals of Oncology, 2017, 28, 1084-1089.	1.2	38
40	Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell Function and Promoting Treg Activity. Cellular Physiology and Biochemistry, 2017, 41, 1271-1284.	1.6	158
41	Mesenchymal Stem Cell Therapy Protects Lungs from Radiation-Induced Endothelial Cell Loss by Restoring Superoxide Dismutase 1 Expression. Antioxidants and Redox Signaling, 2017, 26, 563-582.	5.4	73
42	Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance. Cancer Letters, 2017, 386, 87-99.	7.2	21
43	Down-Regulation of CD62L Shedding inÂTÂCells by CD39+ Regulatory T Cells LeadsÂto Defective Sensitization in ContactÂHypersensitivity Reactions. Journal of Investigative Dermatology, 2017, 137, 106-114.	0.7	22
44	Modeling DNAÂdamage-induced pneumopathy in mice: insight from danger signaling cascades. Radiation Oncology, 2017, 12, 142.	2.7	25
45	Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis. Oncotarget, 2017, 8, 18773-18791.	1.8	22
46	The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Frontiers in Immunology, 2016, 7, 591.	4.8	77
47	Role of SGK1 for fatty acid uptake, cell survival and radioresistance of NCI-H460 lung cancer cells exposed to acute or chronic cycling severe hypoxia. Radiation Oncology, 2016, 11, 75.	2.7	27
48	Targeted Inhibition of Glutamine-Dependent Glutathione Metabolism Overcomes Death Resistance Induced by Chronic Cycling Hypoxia. Antioxidants and Redox Signaling, 2016, 25, 89-107.	5.4	47
49	Deubiquitylating enzyme USP9x regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death and Disease, 2016, 7, e2039-e2039.	6.3	30
50	Extracellular Adenosine Production by ecto-5′-Nucleotidase (CD73) Enhances Radiation-Induced Lung Fibrosis. Cancer Research, 2016, 76, 3045-3056.	0.9	60
51	Therapy with Multipotent Mesenchymal Stromal Cells Protects Lungs from Radiation-Induced Injury and Reduces the Risk of Lung Metastasis. Antioxidants and Redox Signaling, 2016, 24, 53-69.	5.4	47
52	RHAMM splice variants confer radiosensitivity in human breast cancer cell lines. Oncotarget, 2016, 7, 21428-21440.	1.8	18
53	Abstract 1649: Deadly fuel: Fibroblasts mediate cancer cell death through tunneling nanotubes in response to ionizing radiation. , 2016, , .		0
54	The Focinator - a new open-source tool for high-throughput foci evaluation of DNA damage. Radiation Oncology, 2015, 10, 163.	2.7	45

#	Article	IF	CITATIONS
55	Covalentâ€Allosteric Kinase Inhibitors. Angewandte Chemie - International Edition, 2015, 54, 10313-10316.	13.8	87
56	Prognostic model for long-term survival of locally advanced non-small-cell lung cancer patients after neoadjuvant radiochemotherapy and resection integrating clinical and histopathologic factors. BMC Cancer, 2015, 15, 363.	2.6	26
57	Regulatory T Cell–Derived Adenosine Induces Dendritic Cell Migration through the Epac-Rap1 Pathway. Journal of Immunology, 2015, 194, 3735-3744.	0.8	45
58	Endothelial Caveolin-1 regulates the radiation response of epithelial prostate tumors. Oncogenesis, 2015, 4, e148-e148.	4.9	28
59	Nestin(+) Tissue-Resident Multipotent Stem Cells Contribute to Tumor Progression by Differentiating into Pericytes and Smooth Muscle Cells Resulting in Blood Vessel Remodeling. Frontiers in Oncology, 2014, 4, 169.	2.8	52
60	Dihydroartemisinin is a Hypoxia-Active Anti-Cancer Drug in Colorectal Carcinoma Cells. Frontiers in Oncology, 2014, 4, 116.	2.8	22
61	Thorax irradiation triggers a local and systemic accumulation of immunosuppressive CD4+ FoxP3+ regulatory T cells. Radiation Oncology, 2014, 9, 98.	2.7	55
62	Exploiting Celecoxib in Cancer Therapy. , 2014, , 105-133.		1
63	The Membrane-targeted Alkylphosphocholine Erufosine Interferes with Survival Signals from the Extracellular Matrix. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 578-591.	1.7	6
64	Targeting apoptosis pathways by Celecoxib in cancer. Cancer Letters, 2013, 332, 313-324.	7.2	160
65	The Action of Small GTPases Rab11 and Rab25 in Vesicle Trafficking During Cell Migration. Cellular Physiology and Biochemistry, 2012, 29, 647-656.	1.6	39
66	Effects of ionizing radiation in combination with Erufosine on T98G glioblastoma xenograft tumours: a study in NMRI nu/nu mice. Radiation Oncology, 2012, 7, 172.	2.7	9
67	Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent. Strahlentherapie Und Onkologie, 2012, 188, 274-281.	2.0	30
68	The Intrinsic Apoptosis Pathways as a Target in Anticancer Therapy. Current Pharmaceutical Biotechnology, 2012, 13, 1426-1438.	1.6	63
69	New insights into the molecular pathology of radiation-induced pneumopathy. Radiotherapy and Oncology, 2011, 101, 86-92.	0.6	62
70	Protein Kinase C Delta (PKCδ) Affects Proliferation of Insulin-Secreting Cells by Promoting Nuclear Extrusion of the Cell Cycle Inhibitor p21Cip1/WAF1. PLoS ONE, 2011, 6, e28828.	2.5	13
71	Anti-apoptotic Bcl-2 fails to form efficient complexes with pro-apoptotic Bak to protect from Celecoxib-induced apoptosis. Biochemical Pharmacology, 2011, 81, 32-42.	4.4	14
72	Apoptosis induction and tumor cell repopulation: The yin and yang of radiotherapy. Radiation Oncology, 2011, 6, 176.	2.7	34

#	Article	IF	CITATIONS
73	Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on Celecoxib-induced apoptosis. Biochemical Pharmacology, 2010, 79, 10-20.	4.4	39
74	Aurora kinase inhibitor ZM447439 induces apoptosis via mitochondrial pathways. Biochemical Pharmacology, 2010, 79, 122-129.	4.4	51
75	The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation. Radiation Oncology, 2010, 5, 108.	2.7	53
76	Dihydroartemisinin Induces Apoptosis by a Bak-Dependent Intrinsic Pathway. Molecular Cancer Therapeutics, 2010, 9, 2497-2510.	4.1	79
77	The additional loss of Bak and not the lack of the protein tyrosine kinase p56/Lck in one JCaM1.6 subclone caused pronounced apoptosis resistance in response to stimuli of the intrinsic pathway. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 711-720.	4.9	8
78	Targeting the tumour stroma to increase efficacy of chemo- and radiotherapy. Clinical and Translational Oncology, 2009, 11, 75-81.	2.4	23
79	Efficacy of a Triple Treatment with Irradiation, Agonistic TRAIL Receptor Antibodies and EGFR Blockade. Strahlentherapie Und Onkologie, 2009, 185, 8-18.	2.0	34
80	Pharmacokinetics and biodistribution of Erufosine in nude mice - implications for combination with radiotherapy. Radiation Oncology, 2009, 4, 46.	2.7	14
81	Epac inhibits migration and proliferation of human prostate carcinoma cells. British Journal of Cancer, 2009, 101, 2038-2042.	6.4	51
82	Combination of the Pro-Apoptotic TRAIL-Receptor Antibody Mapatumumab With Ionizing Radiation Strongly Increases Long-Term Tumor Control Under Ambient and Hypoxic Conditions. International Journal of Radiation Oncology Biology Physics, 2009, 75, 198-202.	0.8	15
83	Combined action of celecoxib and ionizing radiation in prostate cancer cells is independent of pro-apoptotic Bax. Radiotherapy and Oncology, 2009, 90, 413-421.	0.6	13
84	Efficacy of triple therapies including ionising radiation, agonistic TRAIL antibodies and cisplatin. Oncology Reports, 2009, 21, 1455-60.	2.6	7
85	Analysis of complex protein kinase B signalling pathways in human prostate cancer samples. BJU International, 2008, 102, 371-382.	2.5	20
86	Importance of Bak for celecoxib-induced apoptosis. Biochemical Pharmacology, 2008, 76, 1082-1096.	4.4	12
87	Influence of Amitriptyline on Eryptosis, Parasitemia and Survival of <i>Plasmodium Berghei</i> -Infected Mice. Cellular Physiology and Biochemistry, 2008, 22, 405-412.	1.6	60
88	The role of PDGF in radiation oncology. Radiation Oncology, 2007, 2, 5.	2.7	49
89	Increased cytotoxicity of ionizing radiation in combination with membrane-targeted apoptosis modulators involves downregulation of protein kinase B/Akt-mediated survival-signaling. Radiotherapy and Oncology, 2006, 80, 199-206.	0.6	33
90	215 In vitro and in vivo effects after combined treatment of colorectal tumors with apoptosis inducing trail receptor antibodies hgs-etr1 and HGS-ETR2 and radiotherapy. Radiotherapy and Oncology, 2006, 78, S75.	0.6	2

#	Article	IF	CITATIONS
91	The membrane targeted apoptosis modulators erucylphosphocholine and erucylphosphohomocholine increase the radiation response of human glioblastoma cell lines in vitro. Radiation Oncology, 2006, 1, 6.	2.7	48
92	Combination of celecoxib with percutaneous radiotherapy in patients with localised prostate cancer - a phase I study. Radiation Oncology, 2006, 1, 9.	2.7	26
93	Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene, 2006, 25, 5145-5154.	5.9	104
94	Proapoptotic activity of Ukrain is based on Chelidonium majusL. alkaloids and mediated via a mitochondrial death pathway. BMC Cancer, 2006, 6, 14.	2.6	59
95	Irradiation-Induced Pneumonitis Mediated by the CD95/CD95-Ligand System. Journal of the National Cancer Institute, 2006, 98, 1248-1251.	6.3	37
96	Type I and type II reactions in TRAIL-induced apoptosis – results from dose–response studies. Oncogene, 2005, 24, 130-140.	5.9	79
97	Array-based comparative gene expression analysis of tumor cells with increased apoptosis resistance after hypoxic selection. Oncogene, 2005, 24, 5914-5922.	5.9	28
98	Bcl-2 mediated inhibition of erucylphosphocholine-induced apoptosis depends on its subcellular localisation. Biochemical Pharmacology, 2005, 70, 837-850.	4.4	12
99	Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer, 2005, 5, 5.	2.6	74
100	4-Anilinoquinazolines with Lavendustin A Subunit as Inhibitors of Epidermal Growth Factor Receptor Tyrosine Kinase: Syntheses, Chemical and Pharmacological Properties ChemInform, 2005, 36, no.	0.0	0
101	High activity of acid sphingomyelinase in major depression. Journal of Neural Transmission, 2005, 112, 1583-1590.	2.8	126
102	Stimulation of erythrocyte ceramide formation by platelet-activating factor. Journal of Cell Science, 2005, 118, 1233-1243.	2.0	142
103	Unraveling the Function of the Rhodospirillum rubrum Activator of Polyhydroxybutyrate (PHB) Degradation: the Activator Is a PHB-Granule-Bound Protein (Phasin). Journal of Bacteriology, 2004, 186, 2466-2475.	2.2	77
104	MAP kinase pathways involved in glioblastoma response to erucylphosphocholine. International Journal of Oncology, 2004, 25, 1721.	3.3	2
105	Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. FASEB Journal, 2004, 18, 1906-1908.	0.5	59
106	Molecular ordering of hypoxia-induced apoptosis: critical involvement of the mitochondrial death pathway in a FADD/caspase-8 independent manner. Oncogene, 2004, 23, 3757-3769.	5.9	55
107	Involvement of tyrosine kinase p56/Lck in apoptosis induction by anticancer drugs. Biochemical Pharmacology, 2004, 67, 1859-1872.	4.4	24
108	Molekulare Modulation der Strahlenwirkung. Onkologe, 2004, 10, 55-62.	0.7	0

#	Article	IF	CITATIONS
109	Influence of hypoxia on TRAIL-induced apoptosis in tumor cells. International Journal of Radiation Oncology Biology Physics, 2004, 58, 386-396.	0.8	32
110	Apoptosis-modulating agents in combination with radiotherapy—current status and outlook. International Journal of Radiation Oncology Biology Physics, 2004, 58, 542-554.	0.8	123
111	4-Anilinoquinazolines with Lavendustin A subunit as inhibitors of epidermal growth factor receptor tyrosine kinase: syntheses, chemical and pharmacological properties. European Journal of Medicinal Chemistry, 2004, 39, 1001-1011.	5.5	25
112	MAP kinase pathways involved in glioblastoma response to erucylphosphocholine. International Journal of Oncology, 2004, 25, 1721-7.	3.3	4
113	Pseudomonas aeruginosa activates Cl? channels in host epithelial cells. Pflugers Archiv European Journal of Physiology, 2003, 447, 23-28.	2.8	7
114	Inhibition der Signaltransduktion als therapeutisches Prinzip. Onkologe, 2003, 9, 1088-1101.	0.7	0
115	The tyrosine kinase Lck is involved in regulation of mitochondrial apoptosis pathways. Oncogene, 2003, 22, 176-185.	5.9	31
116	Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene, 2003, 22, 2621-2631.	5.9	61
117	Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nature Medicine, 2003, 9, 322-330.	30.7	521
118	Molecular requirements for the combined effects of TRAIL and ionising radiation. Radiotherapy and Oncology, 2003, 68, 189-198.	0.6	26
119	Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB Journal, 2003, 17, 1-25.	0.5	123
120	Novel chemotherapeutic agents for the treatment of glioblastoma multiforme. Expert Opinion on Investigational Drugs, 2003, 12, 1899-1924.	4.1	36
121	Apoptotic Response of Chang Cells to Infection with Pseudomonas aeruginosa Strains PAK and PAO-I: Molecular Ordering of the Apoptosis Signaling Cascade and Role of Type IV Pili. Infection and Immunity, 2003, 71, 2665-2673.	2.2	40
122	Membrane Targeted Anticancer Drugs: Potent Inducers of Apoptosis and Putative Radiosensitisers. Anti-Cancer Agents in Medicinal Chemistry, 2003, 3, 343-353.	7.0	84
123	Ceramide-Rich Membrane Rafts Mediate CD40 Clustering. Journal of Immunology, 2002, 168, 298-307.	0.8	239
124	<i>Pseudomonas Aeruginosa</i> Triggered Apoptosis of Human Epithelial Cells Depends on the Temperature During Infection. Cellular Physiology and Biochemistry, 2002, 12, 207-214.	1.6	7
125	Structure-activity relationships of alkylphosphocholine derivatives: antineoplastic action on brain tumor cell lines in vitro. Cancer Chemotherapy and Pharmacology, 2002, 50, 71-79.	2.3	29
126	Increased delivery of erucylphosphocholine to C6 gliomas by chemical opening of the blood-brain barrier using intracarotid pentylglycerol in rats. Cancer Chemotherapy and Pharmacology, 2002, 50, 299-304.	2.3	34

#	Article	IF	CITATIONS
127	New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum. Apoptosis: an International Journal on Programmed Cell Death, 2002, 7, 441-447.	4.9	56
128	Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 431-439.	4.9	131
129	Molecular mechanisms of bacteria induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 441-445.	4.9	135
130	Induction of differentiation and tetraploidy by long-term treatment of C6 rat glioma cells with erucylphosphocholine. International Journal of Oncology, 2001, 19, 673-80.	3.3	2
131	Pseudomonas aeruginosa-Induced Apoptosis Involves Mitochondria and Stress-Activated Protein Kinases. Infection and Immunity, 2001, 69, 2675-2683.	2.2	83
132	Erucylphosphocholine-induced apoptosis in chemoresistant glioblastoma cell lines: involvement of caspase activation and mitochondrial alterations. Anticancer Research, 2001, 21, 3389-96.	1.1	26
133	Transient and controllable opening of the blood-brain barrier to cytostatic and antibiotic agents by alkylglycerols in rats. Experimental Brain Research, 2000, 135, 417-422.	1.5	63
134	Long-term follow-up and outcome of 39 patients with chronic granulomatous disease. Journal of Pediatrics, 2000, 137, 687-693.	1.8	174
135	Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis ofNeisseria gonorrhoeae. FEBS Letters, 2000, 478, 260-266.	2.8	107
136	Erucylphosphocholine, a novel antineoplastic ether lipid, blocks growth and induces apoptosis in brain tumor cell lines in vitro International Journal of Oncology, 1999, 14, 15-22.	3.3	16
137	Erucylphosphocholine: pharmacokinetics, biodistribution and CNS-accumulation in the rat after intravenous administration. Cancer Chemotherapy and Pharmacology, 1999, 44, 484-490.	2.3	43
138	An inâ€frame triplet deletion within the gp91â€phox gene in an adult Xâ€linked chronic granulomatous disease patient with residual NADPH–oxidase activity. European Journal of Haematology, 1997, 58, 78-85.	2.2	16
139	Chronic granulomatous disease in adults. Lancet, The, 1996, 347, 220-223.	13.7	120
140	Improvement of superoxide production in monocytes from patients with chronic granulomatous disease by recombinant cytokines. Blood, 1993, 81, 2131-2136.	1.4	15
141	Modulation of human monocyte superoxide production by recombinant interleukin-3. Agents and Actions, 1992, 37, 127-133.	0.7	5
142	SEA BLUE HISTIOCYTES IN THE BONE MARROW OF VARIANT CHRONIC GRANULOMATOUS DISEASE WITH RESIDUAL MONOCYTE NADPH-OXIDASE ACTIVITY. British Journal of Haematology, 1991, 78, 278-280.	2.5	7
143	Radiation Therapy and Apoptosis. , 0, , 1049-1086.		2
144	Targeting AKT-Dependent Regulation of Antioxidant Defense Sensitizes AKT-E17K Expressing Cancer Cells to Ionizing Radiation. Frontiers in Oncology, 0, 12, .	2.8	2