Giulia Stratta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686619/publications.pdf

Version: 2024-02-01

140 35,907 62 123
papers citations h-index g-index

140 140 140 16241 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
2	Breakthrough Multi-Messenger Astrophysics with the THESEUS Space Mission. Galaxies, 2022, 10, 60.	3.0	3
3	The Peculiar Short-duration GRB 200826A and Its Supernova*. Astrophysical Journal, 2022, 932, 1.	4.5	37
4	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
5	Gamma ray burst studies with THESEUS. Experimental Astronomy, 2021, 52, 277-308.	3.7	9
6	Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities. Experimental Astronomy, 2021, 52, 407-437.	3.7	8
7	Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy, 2021, 52, 245-275.	3.7	12
8	The THESEUS space mission: science goals, requirements and mission concept. Experimental Astronomy, 2021, 52, 183-218.	3.7	32
9	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
10	A comparison between short GRB afterglows and kilonova AT2017gfo: shedding light on kilonovae properties. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3379-3397.	4.4	52
11	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^⅓Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
12	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.4	9
13	Search for the optical counterpart of the GW170814 gravitational wave event with the VLT Survey Telescope. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1731-1754.	4.4	3
14	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	5.1	70
15	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
16	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
17	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
18	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145

#	Article	IF	CITATIONS
19	Can we quickly flag ultra-long gamma-ray bursts?. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2471-2476.	4.4	11
20	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
21	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
22	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
23	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
24	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	50
25	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	27
26	Unveiling the enigma of ATLAS17aeu. Astronomy and Astrophysics, 2019, 621, A81.	5.1	1
27	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
28	GW170817: implications for the local kilonova rate and for surveys from ground-based facilities. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4355-4360.	4.4	15
29	On the Magnetar Origin of the GRBs Presenting X-Ray Afterglow Plateaus. Astrophysical Journal, 2018, 869, 155.	4.5	62
30	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
31	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
32	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
33	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
34	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
35	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	2.6	133
36	THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 2018, 62, 662-682.	2.6	56

#	Article	lF	Citations
37	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , $2018, 21, 1.$		2
38	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
39	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
40	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
41	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
42	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
43	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
44	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	27.8	715
45	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
46	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
47	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
48	THE MOST PROMISING ASTROPHYSICAL SOURCES OF ELECTROMAGNETIC AND GRAVITATIONAL RADIATION. , 2017, , 330-334.		0
49	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
50	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
51	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
52	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
53	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
54	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968

#	Article	IF	CITATIONS
55	Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A. Galaxies, 2017, 5, 6.	3.0	3
56	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
57	eXTP: Enhanced X-ray Timing and Polarization mission. Proceedings of SPIE, 2016, , .	0.8	106
58	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
59	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
60	Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 105-107.	0.3	0
61	What's Next for VST: Electromagnetic Follow-Up of Gravitational Waves Events. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 297-302.	0.3	1
62	The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1111-1122.	4.4	26
63	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
64	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
65	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
66	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
67	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
68	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
69	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
70	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
71	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
72	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224

#	Article	IF	Citations
73	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
74	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
75	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
76	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
77	ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?. Astrophysical Journal, 2015, 800, 16.	4.5	35
78	GAME: GRB AND ALL-SKY MONITOR EXPERIMENT., 2015,,.		0
79	Fall back accretion and energy injections in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3642-3650.	4.4	21
80	The Large Observatory for x-ray timing. Proceedings of SPIE, 2014, , .	0.8	10
81	Constraining the rate and luminosity function of Swift gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 444, 15-28.	4.4	21
82	GAME: GRB and All-sky Monitor Experiment. International Journal of Modern Physics D, 2014, 23, 1430010.	2.1	0
83	A quiescent galaxy at the position of the long GRB 050219A. Astronomy and Astrophysics, 2014, 572, A47.	5.1	18
84	The LOFT contribution to GRB science. Nuclear Physics, Section B, Proceedings Supplements, 2013, 239-240, 109-112.	0.4	4
85	THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?. Astrophysical Journal, 2013, 766, 30.	4.5	148
86	THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES. Astrophysical Journal, 2013, 779, 66.	4.5	67
87	The Swift gamma-ray burst redshift distribution: selection biases and optical brightness evolution at high z?. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2141-2149.	4.4	46
88	The seven year <i>Swift</i> -XRT point source catalog (1SWXRT). Astronomy and Astrophysics, 2013, 551, A142.	5.1	52
89	The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2668-2673.	4.4	108
90	UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B. Astrophysical Journal, 2012, 748, 132.	4.5	33

#	Article	lF	Citations
91	THE HIGHLY ENERGETIC EXPANSION OF SN 2010bh ASSOCIATED WITH GRB 100316D. Astrophysical Journal, 2012, 753, 67.	4.5	103
92	LOFT: the Large Observatory For X-ray Timing. Proceedings of SPIE, 2012, , .	0.8	29
93	GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST. Astrophysical Journal, 2012, 748, 59.	4.5	28
94	Gamma-ray bursts afterglows with energy injection from a spinning down neutron star. Astronomy and Astrophysics, 2011, 526, A121.	5.1	132
95	GRB 100614A and GRB 100615A: two extremely dark gamma-ray bursts. Astronomy and Astrophysics, 2 532, A48.	011,	7
96	The puzzling temporally variable optical and X-ray afterglow of GRB 101024A. Astronomy and Astrophysics, 2011, 530, A74.	5.1	2
97	The Swift serendipitous survey in deep XRT GRB fields (SwiftFT). Astronomy and Astrophysics, 2011, 528, A122.	5.1	31
98	The origin of the prompt optical emission in GRB 060111B. Advances in Space Research, 2011, 47, 1413-1415.	2.6	O
99	Is GRB 050904 at $z = 6.3$ absorbed by dust?. Astronomy and Astrophysics, 2011, 532, A45.	5.1	17
100	Evidence for an anticorrelation between the duration of the shallow decay phase and the burst energetics. , 2010 , , .		1
101	GRB 090902B: AFTERGLOW OBSERVATIONS AND IMPLICATIONS. Astrophysical Journal, 2010, 714, 799-804.	4.5	36
102	The ASDC Multi Mission Interactive Archive: on line analysis of the Swiftâ^•XRT data., 2010,,.		0
103	First generation of quasars. Nature, 2010, 464, 359-360.	27.8	O
104	THE SPECTRAL ENERGY DISTRIBUTION OF <i>FERMI</i> BRIGHT BLAZARS. Astrophysical Journal, 2010, 716, 30-70.	4.5	741
105	A multiwavelength study of Swift GRB 060111B constraining the origin of its prompt optical emission. Astronomy and Astrophysics, 2009, 503, 783-795.	5.1	14
106	Evidence for an anticorrelation between the duration of the shallow decay phase of GRBÂX-ray afterglows and redshift. Astronomy and Astrophysics, 2009, 494, L9-L12.	5.1	5
107	THE PROMPT, HIGH-RESOLUTION SPECTROSCOPIC VIEW OF THE "NAKED-EYE―GRB080319B. Astrophysical Journal, 2009, 694, 332-338.	4.5	55
108	The optical afterglows and host galaxies of three shortâ•hard gamma-ray bursts., 2009,,.		0

#	Article	IF	Citations
109	The TAROT archive: rising afterglows. , 2009, , .		4
110	A γ-ray burst at a redshift of z â‰^ 8.2. Nature, 2009, 461, 1254-1257.	27.8	535
111	<i>FERMI</i> OBSERVATIONS OF GRB 090902B: A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION. Astrophysical Journal, 2009, 706, L138-L144.	4.5	364
112	The optical afterglows and host galaxies of three short/hard gamma-ray bursts. Astronomy and Astrophysics, 2009, 498, 711-721.	5.1	73
113	High energy variability of 3C 273 during the AGILE multiwavelength campaign of December 2007–January 2008. Astronomy and Astrophysics, 2009, 494, 49-61.	5.1	17
114	The complex light curve of the afterglow of GRB071010A . Monthly Notices of the Royal Astronomical Society, 2008, 388, 347-356.	4.4	44
115	A study of the prompt and afterglow emission of the short GRB 061201. AIP Conference Proceedings, 2008, , .	0.4	0
116	Early emission of rising optical afterglows: the case of GRB 060904B and GRB 070420. Astronomy and Astrophysics, 2008, 483, 847-855.	5.1	27
117	Dust Properties at $z = 6.3$ in the Host Galaxy of GRB 050904. Astrophysical Journal, 2007, 661, L9-L12.	4.5	79
118	The gamma-ray burst 050904: evidence for a termination shock?. Astronomy and Astrophysics, 2007, 462, 565-573.	5.1	34
119	X-ray flashes or soft gamma-ray bursts?. Astronomy and Astrophysics, 2007, 461, 485-492.	5.1	10
120	Multicolor observations of the afterglow of the short/hard GRB 050724. Astronomy and Astrophysics, 2007, 473, 77-84.	5.1	50
121	UVES/VLT high resolution spectroscopy of GRB 050730 afterglow: probing the features of the GRB environment. Astronomy and Astrophysics, 2007, 467, 629-639.	5.1	42
122	GRBÂ070311: a direct link between the prompt emission and the afterglow. Astronomy and Astrophysics, 2007, 474, 793-805.	5.1	25
123	INTEGRAL high-energy monitoring of the X-ray burster KS 1741â^293*. Monthly Notices of the Royal Astronomical Society, 2007, 380, 615-620.	4.4	9
124	A study of the prompt and afterglow emission of the short GRB 061201. Astronomy and Astrophysics, 2007, 474, 827-835.	5.1	64
125	Continuous optical monitoring during the prompt emission of GRB 060111B. Astronomy and Astrophysics, 2006, 451, L39-L42.	5.1	43
126	Detection of a Very Bright Optical Flare from the Gamma-Ray Burst GRB 050904 at Redshift 6.29. Astrophysical Journal, 2006, 638, L71-L74.	4.5	82

#	Article	IF	CITATIONS
127	Observation of the prompt and early afterglow of GRB 050904 by TAROT. AIP Conference Proceedings, 2006, , .	0.4	0
128	Near Infrared monitoring of the afterglow of the very bright Swift burst GRB 050525. AIP Conference Proceedings, 2006, , .	0.4	0
129	Early re-brightening of the afterglow of GRBÂ050525a. Astronomy and Astrophysics, 2005, 439, L35-L38.	5.1	32
130	Extinction properties of the X-ray bright/optically faint afterglow of GRB 020405. Astronomy and Astrophysics, 2005, 441, 83-88.	5.1	34
131	A Flash in the Dark: UVES Very Large Telescope Highâ€Resolution Spectroscopy of Gammaâ€Ray Burst Afterglows. Astrophysical Journal, 2005, 624, 853-867.	4.5	65
132	Absorption in Gammaâ€Ray Burst Afterglows. Astrophysical Journal, 2004, 608, 846-864.	4.5	116
133	A Comparative Study of the Xâ€Ray Afterglow Properties of Optically Bright and Dark Gammaâ€Ray Bursts. Astrophysical Journal, 2003, 592, 1018-1024.	4.5	74
134	The X-ray absorber of PKS 2126-158. Astronomy and Astrophysics, 2003, 409, 57-64.	5.1	8
135	Constraints to the nature of the central GRB engine from a comparative analysis of X-ray properties of afterglows. AIP Conference Proceedings, 2000, , .	0.4	1
136	Observation of X-ray Lines from a Gamma-Ray Burst (GRB991216): Evidence of Moving Ejecta from the Progenitor. Science, 2000, 290, 955-958.	12.6	214
137	Iron line signatures in X-ray afterglows of GRB by BeppoSAX. Astronomy and Astrophysics, 1999, 138, 431-432.	2.1	20
138	GRB980613 a Very Faint Burst with a Not So Faint Afterglow Detected by BeppoSAX., 0,, 201-203.		2
139	GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	4
140	Temporal and Spectral Analysis of X-Ray Afterglows of GRBs Observed by BeppoSAX., 0,, 118-120.		1